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ABSTRACT 

The use of copula analysis to estimate the lifetime of bonds is gaining popularity in 

the financial sector.  Taking this concept a step further, the following research project 

explores the use of the copula method in estimating the joint occurrence of bond default as a 

method of predictive analysis of bond lifetime. This is accomplished by means of an in-

depth discussion on copulas followed by a series of illustrative experiments and examples. In 

particular, this text covers not only the definition of three different copulas, but also an 

explanation of how these copulas can be used to estimate the lifetimes of bonds, predict the 

probability of default rate, and simulate a the value of collateralized debt obligation (CDO). 

The three copulas explored within this text the Gaussian copula, the Clayton copula, and the 

t-copula. Illustrative examples included 100,000 portfolios that were randomly generated 

each containing 10 bonds. After the lifetimes were calculated, a toy model was implemented 

to simulate a CDO with two traunches: a Senior traunche and a Equity traunche. The paper 

concludes with simulations that utilize probability values gleaned from historical data as 

provided by Joshua Coval, Jakub Jurek, and Erik Stafford in their work entitled “The 

Economics of Structured Finance.”   
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I. INTRODUCTION 

WHAT IS A COPULA? 

A significant topic of interest is the dependence between random variables, in 

particular, components of a random vector of financial risk factors. One method of 

observing this dependent behavior is by constructing a time series. However, as noted by 

Brendan Beare, copulas can also accomplish this, providing a model of this dependence over 

time in a stationary Markov chain. This is actually the preferred method because copulas 

better cordon off the dependence structure as portrayed by a joint distribution function for a 

random vector of risk factors (Beare 2007).  

According to McNeil, Frey, and Embrechts (MFE), copulas achieve this by utilizing 

a bottom-up approach to multivariate model building. Which is particularly useful since the 

marginal behavior is easier to estimate than their dependence structure; copulas combine 

marginal models with probable dependence models (McNeil et al. 2005): “A d-dimensional 

copula is a distribution function on [0, 1]! with standard uniform marginal distributions” 

(185). Let !(!)   =   !(!!,… ,!!) represent the multivariate distribution functions that are 

copulas. Meaning that C is “a mapping of the unity hypercube into the unit interval” (185) 

where the following properties must be true:  

(1.) !(!) is increasing with each component !! .  

(2.) !(1,… , 1,!! , 1,… , 1)   =   !! for all !   ∈    [1,… ,!],!!   ∈    [0, 1].  

(3.) When all (!!,… ,!!), (!!,… , !!)   ∈ [0, 1]! where  

       !!   ≤   !! ,   …!
!!!! (−1)!!!⋯!!"!(!!!!

!
!"!! ,… ,!!"!)   ≥ 0, where !!! =   !!   

      and !!! =   !! for all j ∈ 1,… ,! . 
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In particular, this report focuses on and employs the “copula of !.” According to Sklar’s 

Theorem, all multivariate distribution functions have copulas and copulas used with 

univariate distribution functions can result in multivariate distribution functions (McNeil et 

al. 2005). More formally, Theorem 5.3 from MFE on page 186 gives Sklar’s theorem as: If ! 

is a joint distribution function with margins !!,… ,!! , then there is a copula ! ∶ [0, 1]!   →

[0, 1] such that for all !!,… , !! in ℝ = −∞,∞ ,   

! !!,… , !! = ! !! !! ,… ,!! !! .   

From Sklar’s theorem, it can be concluded that when continuous margins are 

present, it is reasonable to describe the idea of the copula of a distribution, yielding the 

copula of F:  

“If the random variable ! has joint distribution function ! with continuous marginal 

distributions !!,… ,!! , then the copula of ! (or !) is the distribution function ! of  

(!! !! ,… ,!! !! )” (187).  

In summary, if given a random pair of vectors (!,!) then the copula is equal to their joint 

cumulative distribution function. Or more simply,  

! !,! =   !(! ! ,! ! ), 

where !(!, !) is the copula and !  and ! are marginal distribution functions (Habiboellah 

2007).  

 

THE GAUSSIAN COPULA 

A given copula is considered a Gaussian copula, if the random vector Y~Nd(µ, Σ) is 

Gaussian. As noted by MFE, the process of standardizing the margins results in applying a 

series of strictly increasing transformations. Which according to the following proposition, 
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strongly suggests that the copula of Y is identical to the copula of X~Nd(0, P), where P is 

the correlation matrix of Y (McNeil et al. 2005). 

As MFE’s proposition 5.6 states, if (!!,… ,!!) is a random vector with continuous 

margins and copula ! and !!,… ,!! are strictly increasing functions, then 

(!! !! ,… ,!!(!!)) also has copula !. Thus, the Gaussian copula can be defined as: 

!!!" ! =   ! Φ !! ≤   !!,… ,Φ !! ≤   !! =   !! Φ!! !! ,… ,Φ!! !! , 

where Φ is the standard univariate normal distribution and ΦP is the joint distribution 

function of X and can be simulated using the following algorithm (McNeil et al. 2005):  

(1.) Generate !  ~  !! !,! . 

(2.) Return ! = (Φ !! ,… ,Φ !! )′, where Φ  is the standard normal distribution 

function and the random vector !  has distribution function !!!".  

 

THE CLAYTON COPULA 

The bivariate Clayton copula is one of several Archimedean copulas, where an 

Archimedean copula is described as follows by Beare’s article entitled “Archimedean 

Copulas and Temporal Dependence:” 

“A copula … is said to be Archimedean if there exists a continuous, strictly 

decreasing, convex function ! ∶ 0, 1 → [0,∞] with ! 1 = 0 such that ! !, ! =

  ! !! ! ! + ! !  for all !, ! ∈ [0, 1]!. The function ! is referred to as the 

Archimedean generator of !. When ! 0 = ∞, ! is said to be strictly Archimedean, 

and ! is said to be a strict Archimedean generator” (3).  
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Or as defined by MFE, if !! be any exchangeable bivariate copula, then a parametric family 

of asymmetric copulas !!,!,! is obtained by setting !!,!,! !!,!! = !!!!!!!
!!!!! !!! ,!!

! , 

where 0 ≤ !!, !! ≤ 1, ! ≥ 0, and ! ≤ 1 (225).  

Meaning that the Gaussian copula is taken from well-known multivariate distribution 

functions and does not have a simple closed form, and Archimedean copulas like the 

Clayton copula do have simple closed forms (Beare 2007). The algorithm as given my MFE 

for obtaining an asymmetric bivariate Archimedean copula is:  

(1.) Generate a random pair (!!,!!) with distribution function !! . 

(2.) Independent of !!,!!, generate two independent standard uniform variates !! 

and !!.  

(3.)  Return !! = max  {!!
!
!,!!

!
!!!} and !! = max  {!!

!
!,!!

!
!!!}. 

The Clayton copula, as mentioned by Durante, Jaworski, and Mesiar, is particularly useful 

when X and Y, from the random pair (X, Y), are smaller than their α-quantile and β-quantile. 

The formula for this copula is provided below (Durante et al. 2011).  

!!!" !!,!! = (!!!! + !!!! − 1)!!/! , where 0 < ! < ∞. 

 

THE T-COPULA 

As mentioned by Demarta and McNeil, between the Gaussian copula and the t-

copula, the t-copula has been found to be the superior of the two. Since multivariate 

financial returns have frequently been observed of having tail dependence, it makes sense 

that the t-copula better models their dependence structure. This is because the t-copula 

produces both positive upper and lower tail dependence while the Gaussian copula has 
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neither (Demarta et al. 2005). However, in cases where the symmetry of the t-copula may 

not be preferred, the Clayton copula, which only has positive lower tail dependence, may be 

used.  

Like the Gaussian copula, the t-copula is also implicit (McNeil et al. 2005). 

Consequently, the algorithm for its simulation, as given by Algorithm 5.10 in MFE, is very 

similar to that of the Gaussian copula: 

(1.) Generate   !  ~  !!(!,!,!).  

(2.) Return ! = !! !! ,… , !! !!
!
, where !! denotes the distribution function of 

a standard univariate t-distribution and the random vector ! has the distribution 

function !!,!! .  

Note that the random vector X has a multivariate t distribution whose density, as provided 

by Demarta and McNeil, is: 

! ! =   
Γ ! + !

2
Γ !
2 (!")!|Σ|

1+
(!− !)′Σ!!(!− !)

!

!!!!!
 

where the mean vector μ is equal to zero, which results in the unique copula: 

!!,!! ! =    …!!!!(!!)
!!

! !!!
!

! !
! (!")!|!|

1+ !!!!!!
!

!!!!! !!!!!!(!!)
!! . 

 

II. ESTIMATING WITH COPULAS 

ESTIMATING THE NUMBER OF DEFAULTS 

As mentioned in the introduction, copulas are used to illustrate the dependence 

between two random variables. Thus, this method can easily be used to model the lifetimes 

of bonds in a given portfolio, and consequently the number of defaults within said portfolio. 
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This is accomplished by randomly generating a d-dimensional copula, where d is equal to the 

number of bonds in that portfolio. Then, the quantile for a distinct distribution is used on 

this copula to estimate the lifetimes of its bonds. In order to determine whether or not a 

default has occurred, these lifetimes are compared to a specified time horizon. If a bond’s 

lifetime is a shorter length than that of the time horizon, then it can be concluded that the 

bond has defaulted. Therefore, the total number of bonds whose lifetimes are less than that 

of the time horizon is equal to the total number of defaults in this portfolio.  

In conclusion, this method can be employed to determine the likelihood of having a 

particular number of defaults transpire within a certain time period, given that there are d 

bonds in a portfolio. Creating a significantly large group of portfolios each with d bonds, 

tabulating the total number of defaults within in each portfolio, and dividing each total 

default sum by the number of generated portfolios obtains these probabilities. However, it is 

important to note that the greater the amount of portfolios involved in this process, the 

more accurate these probabilities will be.  

 

ESTIMATING THE VALUE OF CDO 

The definition for collateralized debt obligation, or CDO, as supplied by Duffie and 

Gârleanu, is an asset-backed security whose underlying collateral tends to be a portfolio of 

bonds or bank loans. They then go on to define traunches as a prioritized collection of CDO 

securities that are given interested income and principal repayments by a CDO cash-flow 

structure. These returns usually come from a collateral pool of different debt instruments. 

There are many alternate forms of these structures of traunches, but in general the Senior 

CDO notes are paid before mezzanine and other lower-subordinated notes, with the Equity 

traunche receiving any remaining returns after all others are paid (Duffie et al. 2001).  
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Copula models are popular for estimating the value of a CDO. As summarized by 

Habiboellah, in order to determine the amount paid to each of the traunches of a CDO the 

default probability, the default severity/recovery, and the default correlation must be known. 

This is where the use of a copula comes into play. One-factor copula models can be utilized 

to model default correlations, which are the probabilities of one bond, or whatever type of 

asset is of interest, defaulting as a result of another default (Habiboellah 2007).  

 

III. MODEL EXPLANATION 

DESCRIPTION 

As mentioned in the previous section, copulas can be used to model the lifetimes of 

bonds, whose probabilities of defaulting can then be applied to estimating the value of 

CDO. This particular model, defined by the R function “defaultSim(),” provides a simple 

way to simulate a specified number of portfolios each with a given number of bonds by 

using the Gaussian copula, the Clayton copula, and the t-Copula (see appendix for R code). 

Then, it either uses one quantile function to determine the lifetimes of all bonds or two 

quantile functions to determine the lifetimes of each half of the bonds in every portfolio. 

However, this function only has four different quantile functions to choose from: the 

quantile function for the exponential distribution, for the chi-squared distribution, for the 

lognormal distribution, and for the Weibull distribution.  

If a bond’s lifetime is smaller than that of the provided time horizon, the bond has 

defaulted. The number of defaults in each portfolio is then tabulated, and the overall 

probability of a certain number of defaults occurring in a distinct portfolio is calculated. A 

barplot based off of this tabulation is output for each set of probabilities obtained from each 

data set derived from the three different copulas.  
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This tabulation of defaults can then be used in the toy model value of a CDO. This 

toy model assumes that the structure of traunches within each portfolio only includes two 

investors: Senior investors and Equity investors. It also assumes that the Senior investors 

own 80% of each portfolio and are paid first. Thus, the Equity investors own the other 20% 

and are paid second if there are enough returns remaining. Estimates of the expected values 

for the Senior traunche as well as the Equity tranche are printed for each set of simulations. 

Barplots with the probabilities of return values for each traunche are also produced for each 

set of data.  

 

IV. EXPERIMENTS AND DISCUSSION OF RESULTS 

ABSTRACT 

Each of the subsequent experiments, aside from the first, perform a set of trials that 

manipulate the variables that account for the different types of quantile functions available 

to determine the lifetimes of all bonds. The other argument values of the function 

“defaultSim()” for these trials remain unchanged throughout all investigations, except the 

parameter values will vary depending on the selected quantile function(s). In particular, 

“toy.model” is habitually set to “TRUE” considering the fact that the CDO toy model is 

always of interest with the exception of Investigation (3).  

 

CHOOSING PARAMETER VALUES FOR COPULAS 

As mentioned previously, three different copulas are being used to generate a desired 

number of portfolios in each investigation. Therefore, it is important that these results can 

be compared to one another on equal grounds. Meaning, that the parameter value for each 
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copula must be selected based on the fact that the correlation matrices for the lifetimes of all 

bonds from the three randomly generated sets of portfolios are very similar or ideally, equal. 

In order to find these values so that the succeeding investigations can be performed 

successfully, the code found in section (II) of the appendix was created. This code focuses 

on the quantile function for the exponential distribution, but was manipulated to examine 

the other three types of quantile functions included in the original model.  

Once all of the copula parameters were found for each varying quantile function, the 

values were recorded below along with the induced correlation. Also, note that the lifetime 

parameter used in every case was 0.5.   

 
 Exponential 

Quantile 
Function 

Chi-squared 
Quantile 
Function 

Lognormal 
Quantile 
Function 

Weibull 
Quantile 
Function 

Gaussian Copula 0.206 0.2 0.22 0.22 
Clayton Copula 0.509 0.78 0.78 0.999 

t-copula 0.17 0.04 0.07 0.005 
Approximated 

Induced 
Correlation  

0.17 0.12 0.14 0.11 

 

Lastly, consider the case where it is desired to use one type of quantile function to 

estimate the lifetimes of the first half of the bonds in a portfolio and a different quantile 

function to estimate the lifetimes of the second half. Here, the user needs to ensure that 

both sets of parameters result in approximately the same induced correlation. Meaning, that 

if the lifetimes of the first half are estimated using the exponential quantile function and the 

second by means of the chi-squared quantile function, then the correlation matrices for the 

first half should yield an induced correlation similar to that of the second. So for example, it 

would not be recommended to use two different sets of parameter values listed in the table 

above for this given method because each gives a slightly different induced correlation.  
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INVESTIGATION (1): COMPARING COPULAS 

Hypothesis: Since the Gaussian copula has no upper or lower tail dependence, the likelihood 

that there will be a large number of defaults within a given portfolio, is less than that for the 

set of portfolios generated using either the Clayton copula or the t-Copula. Out of these two, 

it is anticipated that the portfolios generated using the t-copula will have a higher likelihood 

of multiple defaults occurring in a specific portfolio. This is because the t-copula has both 

positive upper and lower tail dependence, while the Clayton copula only has positive lower 

tail dependence. Thus as a result, the estimated expected value for the Senior traunche will 

be the highest when the data derived from the Gaussian copula generated portfolios are 

used, and the lowest when the data derived from the t-copula generated portfolios are used. 

Consequently, the estimated expected value for the Equity traunche will be the lowest when 

those simulated by the Gaussian copula are used and the highest when those simulated by 

the t-copula are used, with the expected value of those pertaining to the Clayton copula lying 

somewhere in between.  

 

Implementation: defaultSim(10, 100000, 10, "exp", 0, 0.206, 0.509, 0.17, 0, 0, 0, 0.5, 0.25, T) 

 

Results for Estimating the Number of Defaults:  

     

(a.1)    (b.1)    (c.1) 
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FIGURES (a.1), (b.1), and (c.1) are barplots that give the probabilities of a number of defaults 

occurring in a portfolio generated by one of the three copulas of interest in this report. From 

these diagrams is can be noted that (b.1) has the highest probability value for the event of 

zero defaults occurring, while the (c.1) shows the lowest probability. However, the steepest 

“slope,” resulting in the lowest probabilities for the other totals, is given by figure (b.1), while 

the most gradual “slope” is observed in figure (a.1).    

 
TABLE (1.1): Calculated probabilities of (x) number of bonds defaulting in a particular 

portfolio generated from the Gaussian copula:  

Default 
# 

0 1 2 3 4 5 6 7 8 9 10 

Prob. 0.40172 0.28595 0.16043 0.08272 0.03925 0.01836 0.00748 0.00291 0.00096 0.00021 0.00001 

 

TABLE (1.2): Calculated probabilities of (x) number of bonds defaulting in a particular 

portfolio generated by the Clayton copula:  

Default 
# 

0 1 2 3 4 5 6 7 8 9 10 

Prob. 0.57186 0.16170 0.08933 0.05714 0.03993 0.02831 0.02023 0.01358 0.00955 0.00561 0.00276 

 

TABLE (1.3): Calculated probabilities of (x) number of bonds defaulting in a particular 

portfolio generated by the t-copula:  

Default 
# 

0 1 2 3 4 5 6 7 8 9 10 

Prob. 0.45485 0.24528 0.13663 0.07745 0.04294 0.02378 0.01135 0.00492 0.00207 0.00060 0.00013 
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Results for Estimating the Value of a CDO: 

     

(d.1)    (e.1)    (f.1) 

FIGURES (d.1), (e.1), and (f.1) are barplots that give the probabilities of a number of dollars 

returned to the Senior traunche from a given portfolio generated by a particular copula once 

the time horizon has expired. Just from these plots, it is extremely difficult to distinguish 

which data set resulted in the highest estimated expected value for the amount of returns 

received by the Senior traunche.  

 
TABLE (1.4): Calculated probabilities of (x) number of dollars being returned to the Senior 

traunche from a particular portfolio generated by the Gaussian copula. The estimate of the 

expected value for the Senior traunche was $7.73192:  

Returns 
in ($) 

0 1 2 3 4 5 6 7 8 

Prob. 0.00001 0.00021 0.00096 0.00291 0.00748 0.01836 0.03925 0.08272 0.84810 

 

TABLE (1.5): Calculated probabilities of (x) number of dollars being returned to the Senior 

traunche from a particular portfolio generated by the Clayton copula. The estimate of the 

expected value for the Senior traunche was $7.5106:  

Returns 
in ($) 

0 1 2 3 4 5 6 7 8 

Prob. 0.00276 0.00561 0.00955 0.01358 0.02023 0.02831 0.03993 0.05714 0.82289 
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TABLE (1.6): Calculated probabilities of (x) number of dollars being returned to the Senior 

traunche from a particular portfolio generated by the t-copula. The estimate of the expected 

value for the Senior traunche was $7.67767: 

Returns 
in ($) 

0 1 2 3 4 5 6 7 8 

Prob. 0.00013 0.00060 0.00207 0.00492 0.01135 0.02378 0.04294 0.07745 0.83676 

	  

	  	   	  	   	  

(g.1)    (h.1)    (i.1) 

FIGURES (g.1), (h.1), and (i.1) are barplots that give the probabilities of a number of dollars 

returned to the Equity traunche from a given portfolio generated by a particular copula once 

the time horizon has expired. From these plots, the probabilities for returns being equal to 

two dollars seem to be very similar to one another in all three cases. However, the 

probabilities for the returns being equal to zero dollars or one dollar do vary, (g.1) displaying 

the largest values and (h.1) displaying the smallest.   

 
TABLE (1.7): Calculated probabilities of (x) number of dollars being returned to the Equity 

traunche from a particular portfolio generated by the Gaussian copula. The estimate of the 

expected value for the Equity traunche was $1.08939:  

Returns in ($) 0 1 2 
Prob. 0.31233 0.28595 0.40172 
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TABLE (1.8): Calculated probabilities of (x) number of dollars being returned to the Equity 

traunche from a particular portfolio generated by the Clayton copula. The estimate of the 

expected value for the Equity traunche was $1.30542:  

Returns in ($) 0 1 2 
Prob. 0.26644 0.16170 0.57186 

 

TABLE (1.9): Calculated probabilities of (x) number of dollars being returned to the Equity 

traunche from a particular portfolio generated by the t-copula. The estimate of the expected 

value for the Equity traunche was $1.15498:  

Returns in ($) 0 1 2 
Prob. 0.29987 0.24528 0.45485 

 

Discussion of Results:  

From these results, it can be concluded that the original hypothesis was only partially 

correct. The Senior traunche was more likely to be paid the full eight dollars when the 

portfolios were simulated using the Gaussian copula than any other copula. Meaning that the 

expected value for the amount of returns the Senior traunche received in this case, was the 

highest of the three. Therefore, the original hypothesis was correct when it estimated that 

the Gaussian copula would produce the least number of total bond defaults in a given 

portfolio.  

However, where the hypothesis failed was in comparing how the Clayton copula and 

the t-copula would influence the final output. It was originally thought that the t-Copula 

would produce a larger expected value for the Senior traunche than the Clayton copula. 

However, the observed results have suggested the opposite. Thus, it can be concluded that 

the bonds generated by means of the Clayton copula are more dependent than those 

generated by the t-copula.  
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INVESTIGATION (2): USING ONE QUANTILE FUNCTION 

TRIAL (1): Using the quantile function for the chi-squared distribution to estimate 

the marginal lifetimes of all bonds: Argument “dist1” is equal to “chi.”  

 
Hypothesis: The number of portfolios with little or no defaults will be significantly less than 

those with a large number of defaults considering that the chi-squared distribution that is 

negatively skewed.  

 

Implementation: defaultSim(10, 100000, 10, "chi", 0, 0.2, 0.78, 0.04, 0, 0, 0, 0.5, 0.25, T) 

 

Results for Estimating the Number of Defaults:  

     

(a.2.1)    (b.2.1)    (c.2.1) 

FIGURES (a.2.1), (b.2.1), and (c.2.1) are barplots that give the probabilities of a number of 

defaults occurring in a portfolio when using the quantile function for the chi-squared 

distribution to estimate the lifetime of a bond. It is obvious from these pictures that the chi-

squared quantile function produces lifetimes that are a lot shorter than those produced with 

the exponential quantile function.  

 

Results for Estimating the Value of a CDO: 
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TABLE (2.1): Estimated expected values for the amount of returns received by each 

traunche once the given time horizon was reached: 

 
Type of Copula Gaussian Clayton t-Copula 

Expected Value for 
Senior Traunche 

$3.57761 $3.52666 $3.59479 

Expected Value for 
Equity Traunche 

$0.02209 $0.05642 $0.00277 

 

Discussion of Results:  

These results are almost exactly opposite of those obtained when using the quantile 

function for the exponential distribution to calculate the lifetimes of all bonds. In the 

previous experiment, it was shown that the total number of bonds in a particular portfolio 

was more likely to be a smaller number. However, in this investigation, a larger number of 

bonds defaulting in a given portfolio seems to be the norm. Therefore, the hypothesis was 

indeed correct.  

 

TRIAL (2): Using the quantile function for the lognormal distribution to estimate the 

marginal lifetimes of all bonds: Argument “dist1” is equal to “lnorm.” 

 

Hypothesis: The number of portfolios with little or no defaults will be slightly greater than 

those with a large number of defaults; having a distribution that is slightly less positively 

skewed than that of the exponential distribution.   

 

Implementation: defaultSim(10, 100000, 10, "lnorm", 0, 0.22, 0.78, 0.07, 0, 0, 0, 0.5, 0.25, T) 

 

Results for Estimating the Number of Defaults:  
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 (a.2.2)    (b.2.2)    (c.2.2) 

FIGURES (a.2.2), (b.2.2), and (c.2.2) are barplots that give the probabilities of a number of 

defaults occurring in a portfolio when using the quantile function for the lognormal 

distribution to estimate the lifetime of a bond. These figures look similar to those from the 

first investigation, but with a steeper descent. However, the same basic behavior is observed 

in each case.  

 

Results for Estimating the Value of a CDO: 

TABLE (2.2): Estimated expected values for the amount of returns received by each 

traunche once the given time horizon was reached: 

 
Type of Copula Gaussian Clayton t-Copula 

Expected Value for 
Senior Traunche 

$7.97938 $7.86118 $7.95577 

Expected Value for 
Equity Traunche 

$1.72337 $1.8378 $1.74675 

 

Discussion of Results:  

The hypothesis was slightly incorrect in its assumption that the total number of 

defaults in a given portfolio would be on average slightly less than that of the lifetimes 

estimated using the quantile function for the exponential distribution. In fact, the results 
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illustrate that the traunches will be paid more when the lognormal quantile function is used 

to estimate the lifetimes of all bonds.  

 

TRIAL (3): Using the quantile function for the Weibull distribution to estimate the 

marginal lifetimes of all bonds: Argument “dist1” is equal to “weibull.”  

 

Hypothesis: The probabilities that a given number of bonds defaulting will be approximately 

normally distributed.	  Therefore, the traunches will be paid less than that of the traunches in 

the cases where the exponential quantile function estimates the bond lifetimes, and where 

that of the lognormal quantile function estimates the bond lifetimes. However, these 

traunches will be paid slightly more than those whose bonds were estimated using the 

quantile function for the chi-squared distribution.  	  

 

Implementation: defaultSim(10, 100000, 10, "weibull", 0, 0.22, 0.999, 0.005, 0, 0, 0, 0.5, 0.25, 

T) 

 

Results for Estimating the Number of Defaults:  

     

(a.2.3)    (b.2.3)    (c.2.3) 
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FIGURES (a.2.3), (b.2.3), and (c.2.3) are barplots that give the probabilities of a number of 

defaults occurring in a portfolio when using the quantile function for the weibull distribution 

to estimate the lifetime of a bond. For the most part, each plot shows an approximately 

normal distribution for these probabilities, the exception of course being figure (b.2.3).  

 

Results for Estimating the Value of a CDO: 

TABLE (2.3): Estimated expected values for the amount of returns received by each 

traunche once the given time horizon was reached: 

 
Type of Copula Gaussian Clayton t-Copula 

Expected Value for 
Senior Traunche 

$5.84746 $5.54461 $6.00199 

Expected Value for 
Equity Traunche 

$0.21531 $0.50823 $0.06526 

 

Discussion of Results:  

The hypothesis for this trial was exactly right. The probabilities of a given number of 

bonds defaulting within a specific portfolio whose lifetimes were estimated using the 

exponential or the lognormal quantile function have, as noted early, a positively skewed 

distribution. On the other hand, also previously shown, the probabilities of a given number 

of bonds defaulting within a specific portfolio whose lifetimes were estimated using the chi-

squared quantile function have a negatively skewed distribution. Therefore, if the weibull 

quantile function causes the default probabilities to have an approximately normal 

distribution, it would make sense that the estimated value of returns would be somewhere in 

between those estimated using the other quantile functions.  
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INVESTIGATION (3): USING TWO QUANTILE FUNCTIONS 

TRIAL (1): Using the quantile function for the exponential distribution to estimate 

the marginal lifetimes of the first half of bonds in all of the portfolios, and the quantile 

function for the chi-squared distribution to estimate the second half: Argument “dist1” is 

equal to “exp” and argument “dist2” is equal to “chi.” The common induced correlation is 

approximately 0.16.  

Implementation: defaultSim(10, 100000, 10, "exp", "chi", 0.206, 0.509, 0.17, 0.25, 0.99, 0.1, 

0.5, 0.25, F) 

Results: As observed, the exponential quantile function creates a distribution of bond 

defaults that is very positively skewed, and the chi-squared quantile function creates a 

distribution of bond defaults that is negatively skewed. Therefore, combining the two in one 

portfolio will result in a slightly less positively skewed distribution for these probabilities in 

comparison to those lifetimes estimated using only the quantile function of the exponential 

distribution.  

 

TRIAL (2): Using the quantile function for the exponential distribution to estimate 

the marginal lifetimes of the first half of bonds in all of the portfolios, and the quantile 

function for the lognormal distribution to estimate the second half: Argument “dist1” is equal 

to “exp” and argument “dist2” is equal to “lnorm.” The common induced correlation is 

approximately 0.16.  

Implementation: defaultSim(10, 100000, 10, "exp", "lnorm", 0.206, 0.509, 0.17, 0.25, 0.97, 

0.1, 0.5, 0.25, F) 

Results: As observed, the exponential quantile function creates a distribution of bond 

defaults that is positively skewed, and the lognormal quantile function creates a distribution 
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of bond defaults that is also positively skewed. Therefore, combining the two in one 

portfolio will result in an even more positively skewed distribution of these probabilities than 

that of the bond lifetimes created with just the exponential quantile function. 

 

TRIAL (3): Using the quantile function for the exponential distribution to estimate 

the marginal lifetimes of the first half of bonds in all of the portfolios, and the quantile 

function for the Weibull distribution to estimate the second half: Argument “dist1” is equal 

to “exp” and argument “dist2” is equal to “weibull.” The common induced correlation is 

approximately 0.11.  

Implementation: defaultSim(10, 100000, 10, "exp", "weibull", 0.14, 0.3, 0.09, 0.22, 0.999, 

0.005, 0.5, 0.25, F) 

Results: As observed, the exponential quantile function creates a distribution of bond 

defaults that is positively skewed, and the Weibull quantile function creates a distribution of 

bond defaults that is usually approximately normal. Therefore, combining the two in one 

portfolio will result in a positively skewed distribution of these probabilities. 

 

TRIAL (4): Using the quantile function for the chi-squared distribution to estimate 

the marginal lifetimes of the first half of bonds in all of the portfolios, and the quantile 

function for the lognormal distribution to estimate the second half: Argument “dist1” is equal 

to “chi” and argument “dist2” is equal to “lnorm.” The common induced correlation is 

approximately 0.12. 

Implementation: defaultSim(10, 100000, 10, "chi", "lnorm", 0.2, 0.78, 0.04, 0.19, 0.7, 0.05, 

0.5, 0.25, F) 
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Results: As observed, the chi-squared quantile function creates a distribution of bond 

defaults that is slightly negatively skewed, and the lognormal quantile function creates a 

distribution of bond defaults that is rather positively skewed. Therefore, combining the two 

in one portfolio will result in a positively skewed distribution of these probabilities that is 

slightly less skewed than that of the probabilities resulting solely from the lognormal 

distribution. 

 

TRIAL (5): Using the quantile function for the chi-squared distribution to estimate 

the marginal lifetimes of the first half of bonds in all of the portfolios, and the quantile 

function for the Weibull distribution to estimate the second half: Argument “dist1” is equal 

to “chi” and argument “dist2” is equal to “weibull.” The common induced correlation is 

approximately 0.11. 

Implementation: defaultSim(10, 100000, 10, "chi", "weibull", 0.18, 0.76, 0.03, 0.22, 0.999, 

0.005, 0.5, 0.25, F) 

Results: As observed, the chi-squared quantile function creates a distribution of bond 

defaults that is negatively skewed, and the Weibull quantile function creates a distribution of 

bond defaults that is usually approximately normal. Therefore, combining the two in one 

portfolio will result in a slightly positively skewed distribution of these probabilities. 

 

TRIAL (6): Using the quantile function for the lognormal distribution to estimate the 

marginal lifetimes of the first half of bonds in all of the portfolios, and the quantile function 

for the Weibull distribution to estimate the second half: Argument “dist1” is equal to 

“lnorm” and argument “dist2” is equal to “weibull.” The common induced correlation is 

approximately 0.11. 



	   CR 27 

Implementation: defaultSim(10, 100000, 10, "lnorm", "weibull",  0.18, 0.6, 0.04, 0.22, 0.999, 

0.005, 0.5, 0.25, F) 

Results: As observed, the lognormal quantile function creates a distribution of bond default 

probabilities that is slightly positively skewed, and the Weibull quantile function creates a 

distribution of bond default probabilities that is approximately normal. Therefore, 

combining the two in one portfolio will result in a distribution that is ever so slightly 

positively skewed for these probabilities. 

 

V. SIMULATIONS UTILIZING HISTORICAL DATA 

INFORMATION 

OVERVIEW OF “THE ECONOMICS OF STRUCTURED FINANCE” 

The purpose of Joshua Coval, Jakub Jurek, and Erik Stafford’s article entitled “The 

Economics of Structured Finance” is to describe credit ratings and to examine how “modest 

imprecision in evaluating risks and their exposure to systematic risks” (2) contribute to the 

sporadic behavior of structured finance. What is of particular interest in this piece is the 

simulation spelled out on page nine of Coval et al. The authors demonstrated the sensitivity 

of the CDOs to errors in parameter estimates by simulating payoffs to 40 CDO pools. Each 

pool contained “100 bonds with a five-year default probability of five percent and a recovery 

rate of 50 percent of face value conditional on default” (9). With the annualized default rates 

obtained from historical data for BB+ credit rated bonds and a fixed pairwise bond default 

correlation of 0.20, Coval et al. estimated the lifetimes of these bonds and then applied these 

results to a capital structure. This structure included three prioritized traunches: the “junior 

traunche” being the first to experience loss if the total loss of the portfolio is larger than six 
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percent, the “mezzanine taunche” which experiences loss when the portfolio loss ranges 

from six to twelve percent, and the “senior traunche” which only experiences loss if the 

portfolio loss is greater than twelve percent.  

 

MODEL MODIFICATIONS 

To provide a more realistic and informative example, an investigation using the 

information and design of the Coval et al. simulation recounted above. In order to 

accomplish this, the code utilized previously was modified to accommodate the needs of this 

example. First, the parameter values for the marginal lifetimes had to be calculated. This was 

done by setting letting the continuous random variable !! be equal to the lifetime of bond i 

in years. Next, assuming that the marginal distribution is exponential, the copula parameters 

for each of the three copulas were determined in the following manner.  

(1.) Setting !(!! ≤ 1) equal to 0.1018 (the annualized default rate provided by Coval 

et al.) and solving for !: 

0.0107 = ! !! ≤ 1 =   1− !!! 

0.0107− 1 =   −!!! 

0.9893 = !!! 

ln 0.9893 = −! 

(2.) This value was then used in the code previously created to generate correlation 

matrices for each set of copula estimates. Parameter values were finalized once 

all of the values within each correlation matrix were approximately equal to 0.20. 

The finalized results for these parameter estimates are listed in the table below. 

See appendix for modified code of the function “corCopula().”    
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Copula Type Gaussian Clayton t-Copula 
Marginal Lifetime 

Parameter 
Estimate 

 
0.239 

 
0.640 

 
0.186 

 

(3.) Finally, the original function “defaultSim()” was manipulated to incorporate three 

traunches in the toy model for CDO with attachment points identical to those of 

the Covel et al. simulation. The modified model was then implemented using the 

following R command: 

> defaultSim(10, 10000, 100, "exp", 0, 0.239, 0.640, 0.186, 0, 0, 0, 0.2, 1, T) 

where the argument for the number of portfolios generated was changed to 

10000, the number of bonds in a portfolio to 100, the lifetime parameter to 0.05, 

the time horizon to one year, and the copula parameters to the values found in 

the previous table.  

 

SIMULATION RESULTS 

The bar plots below show the probabilities of each traunche recovering a certain 

amount of their investment over the course of a year as estimated by the three separate 

copulas:  
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 More precisely, the following estimations of the expected values for each of the three 

traunches were found to be the following: 

 
Estimation Method Senior Traunche Mezzanine Traunche Junior Traunche 

Gaussian Copula $86.1063 $4.9394 $2.9179 

Clayton Copula $84.0937 $5.1535 $4.5407 

t-Copula  $85.0234 $4.9341 $3.623 

 

 These results support Covel’s et al. argument that structured finance allows for the 

credit enhancement of the Senior claims. Finally, this example supports the overarching 

hypothesis of the Coval et al. paper because the slightest change in the parameter values 

created significantly different results. For instance, if the parameter values for each of the 

copulas were chosen or estimated incorrectly a proper correlation matrix would not result 

and thus the estimates of the lifetimes of each bond would be incorrect.  
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VI. CONCLUSION 

MODEL CRITIQUE 

This is a very simple model for estimating bond default as well as estimating the 

value of a CDO. However, the model can be revised to include more bonds as well as more 

traunches. It could also be altered to account a larger selection of various quantile functions 

for calculating the marginal lifetimes of each bond. Perhaps it could be changed so that it 

can assign different quantile functions to estimate lifetimes for each bond rather than 

limiting it to only half of the portfolio being estimated by one distribution and the other half 

by another. Another critique of this model is that it includes a large number of arguments. 

While this was beneficial for the purposes of this report, if a user is not as familiar with R or 

with the theory behind the creation of the model, it could easily be misused. The last perhaps 

undesirable feature of this function is that the toy model for estimating value of CDO can 

become very computationally expensive if the number entered for “N” is extremely large. 

The reason why this is a weakness is because ideally “N” should be very large in order to 

ensure that the probabilities that are gleaned from experimentation are as accurate as 

possible.  

 

DISCUSSION OF DIFFERENT COPULAS AND CDO 

Overall the investigations provided in the previous section offered significant 

illustrations and comments on how returns are influenced by bond default, and how the total 

number of defaults in a specified portfolio can be estimated in various ways. Thus, it is very 

important for a user to know what factors will come into play for their specific portfolio in 

order for them to make accurate predictions. For example, they would need to know 
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whether or not an implicit copula, like the Gaussian copula or the t-Copula, would be more 

desirable or whether or not an explicit copula, like the Clayton copula, would be better. If 

the bonds depend more heavily on one another, than using the Clayton would be more 

beneficial than using one of the other two copulas discussed. Another important component 

of creating an ideal model would be the number of traunches involved and how to distribute 

the returns among them when the time horizon has expired. Take for instance, a case where 

a third traunche is added to the structure of a portfolio. Assume that this traunche has 

second priority; this will then negatively impact the Equity traunche because it has least 

priority. In conclusion, copulas are a very effective method for modeling bond defaults and 

as a result the value of CDO.   
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VIII. APPENDIX 
 

I. ORIGINAL MODEL 
 
# This function creates "N" number of portfolios that contain a certain number of  
# bonds as defined by the second argument "bonds." These are randomly generated 
# by means of the Gaussian copula and the Clayton copula and the t-copula with the  
# copula parameters "gauss.par.1," "clay.par.1," "t.par.1," "gauss.par.2," "clay.par.2,"  
# and "t.par.2" using a certain "seed" value. The lifetimes of these bonds are then  
# obtained by utilizing the arguments "dist1," "dist2," and "life.par." If "dist1" is  
# given and "dist2" equals zero, then all bonds have the same marginal lifetime  
# distribution. If "bonds" is even and both "dist1" and "dist2" are given, then the  
# first half of the portfolio has a marginal lifetime distribution as defined by "dist1"  
# and the second half by "dist2." Lastly, "life.par" is the parameter for marginal  
# lifetimes. Once the portfolios have been created and the number of defaults  
# determined, if the "toy.model" argument is equal to TRUE, a toy model value  
# of a CDO will be implemented. In this simple model, 80% of a given  
# portfolio is owned by Senior investors and 20% of the portfolio is owned by  
# Equity investors. If 0.8*bonds is not equal to a whole number, an error  
# message will be printed. 
 
defaultSim = function(seed, N, bonds, dist1, dist2, gauss.par.1, clay.par.1, t.par.1,  
                        gauss.par.2, clay.par.2, t.par.2, life.par, horizon, toy.model=F) 
{ 
 # Set seed 
  if (is.numeric(seed) == TRUE) 
  { 
    set.seed(seed) 
  } 
  else 
  { 
    stop("Error: Please enter a numeric value for seed.") 
  } 
 
  # Create a random Gaussian copula, a random Clayton copula and 
  # a random t-copula to determine lifetimes of all bonds based off  
  # of dist1 when only given the argument "dist1" 
  if (dist2 == 0) 
  { 
 
    # Create a random copulas  
    library(copula) 
    myGaussian = rCopula(N, normalCopula(gauss.par.1, bonds)) 
    myClayton = rCopula(N, claytonCopula(clay.par.1, bonds)) 
    myT = rCopula(N, tCopula(t.par.1, bonds)) 
 
    if (dist1 == "exp") 
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    { 
      myGaussianlifetimes = qexp(myGaussian, life.par) 
      myClaylifetimes = qexp(myClayton, life.par) 
      myTlifetimes = qexp(myT, life.par) 
    } 
    else if (dist1 == "chi") 
    { 
      myGaussianlifetimes = qchisq(myGaussian, life.par) 
      myClaylifetimes = qchisq(myClayton, life.par) 
      myTlifetimes = qchisq(myT, life.par) 
    } 
    else if (dist1 == "lnorm") 
    { 
      myGaussianlifetimes = qlnorm(myGaussian, life.par) 
      myClaylifetimes = qlnorm(myClayton, life.par) 
      myTlifetimes = qlnorm(myT, life.par) 
    } 
    else if (dist1 == "weibull") 
    { 
      myGaussianlifetimes = qweibull(myGaussian, life.par) 
      myClaylifetimes = qweibull(myClayton, life.par) 
      myTlifetimes = qweibull(myT, life.par) 
    } 
    else if (dist1 != "exp" || dist1 != "chi" || dist1 != "lnorm" || dist1 != "weibull") 
    { 
      stop("Error: Please enter either exp, chi, lnorm, or weibull for argument dist1.") 
    } 
  } 
   
  else if (bonds%%2 == 0) 
  { 
    # Calculate half the number of bonds entered  
    half = bonds/2 
     
    # Set seed 
    set.seed(seed)  
 
    # Generate both halves of the portfolios using copulas  
    library(copula) 
    
    myGaussianFirstHalf = rCopula(N, normalCopula(gauss.par.1, half)) 
    myGaussianSecHalf = rCopula(N, normalCopula(gauss.par.2, half)) 
    myGaussian = cbind(myGaussianFirstHalf, myGaussianSecHalf) 
     
    myClaytonFirstHalf = rCopula(N, claytonCopula(clay.par.1, half)) 
    myClaytonSecHalf = rCopula(N, claytonCopula(clay.par.2, half)) 
    myClayton = cbind(myClaytonFirstHalf, myClaytonSecHalf) 
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    myTFirstHalf = rCopula(N, tCopula(t.par.1, half)) 
    myTSecHalf = rCopula(N, tCopula(t.par.2, half)) 
    myT = cbind(myTFirstHalf, myTSecHalf) 
 
    # Determine lifetimes of the first half of the portfolio from dist1 
    if (dist1 == "exp") 
    { 
      myGaussianlifetimes = qexp(myGaussian[, 1:half], life.par) 
      myClaylifetimes = qexp(myClayton[, 1:half], life.par) 
      myTlifetimes = qexp(myT[, 1:half], life.par) 
    } 
    else if (dist1 == "chi") 
    { 
      myGaussianlifetimes = qchisq(myGaussian[, 1:half], life.par) 
      myClaylifetimes = qchisq(myClayton[, 1:half], life.par) 
      myTlifetimes = qchisq(myT[, 1:half], life.par) 
    } 
    else if (dist1 == "lnorm") 
    { 
      myGaussianlifetimes = qlnorm(myGaussian[, 1:half], life.par) 
      myClaylifetimes = qlnorm(myClayton[, 1:half], life.par) 
      myTlifetimes = qlnorm(myT[, 1:half], life.par) 
    } 
    else if (dist1 == "weibull") 
    { 
      myGaussianlifetimes = qweibull(myGaussian[, 1:half], life.par) 
      myClaylifetimes = qweibull(myClayton[, 1:half], life.par) 
      myTlifetimes = qweibull(myT[, 1:half], life.par) 
    } 
    else if (dist1 != "exp" || dist1 != "chi" || dist1 != "lnorm" || dist1 != "weibull") 
    { 
      stop("Error: Please enter either exp, chi, lnorm, or weibull for argument dist1.") 
    } 
     
    # Determine lifetimes of the second half of the portfolio from dist2 
    if (dist2 == "exp") 
    { 
      myGaussianlifetimes = qexp(myGaussian[, half:bonds], life.par) 
      myClaylifetimes = qexp(myClayton[, half:bonds], life.par) 
      myTlifetimes = qexp(myT[, half:bonds], life.par) 
    } 
    else if (dist2 == "chi")  
    { 
      myGaussianlifetimes = qchisq(myGaussian[, half:bonds], life.par) 
      myClaylifetimes = qchisq(myClayton[, half:bonds], life.par) 
      myTlifetimes = qchisq(myT[, half:bonds], life.par) 
    } 
    else if (dist2 == "lnorm") 
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    { 
      myGaussianlifetimes = qlnorm(myGaussian[, half:bonds], life.par) 
      myClaylifetimes = qlnorm(myClayton[, half:bonds], life.par) 
      myTlifetimes = qlnorm(myT[, half:bonds], life.par) 
    } 
    else if (dist2 == "weibull") 
    { 
      myGaussianlifetimes = qweibull(myGaussian[, half:bonds], life.par) 
      myClaylifetimes = qweibull(myClayton[, half:bonds], life.par) 
      myTlifetimes = qweibull(myT[, half:bonds], life.par) 
    } 
    else if (dist2 != "exp" || dist1 != "chi" || dist1 != "lnorm" || dist1 != "weibull") 
    { 
      stop("Error: Please enter either exp, chi, lnorm, weibull, or zero for argument dist2.") 
    } 
  } 
  else 
  { 
    stop("Error: Bond number must be even in order to create a split portfolio.") 
  } 
 
  # Find the number of defaults as estimated by both copulas 
  defaultGauss = myGaussianlifetimes < horizon 
  numDefaultsGauss = apply(defaultGauss, 1, sum) 
  defaultClay = myClaylifetimes < horizon 
  numDefaultsClay = apply(defaultClay, 1, sum) 
  defaultT = myTlifetimes < horizon 
  numDefaultsT = apply(defaultT, 1, sum) 
   
  # Calculate the probability of a given number of bonds defaulting  
  probsGauss = table(numDefaultsGauss)/N 
  probsClay = table(numDefaultsClay)/N 
  probsT = table(numDefaultsT)/N 
   
  # Output results   
  barplot(probsGauss, main="Probability of (x) Bonds Defaulting 
      using the Gaussian Copula", xlab="Number of Bonds", ylab= 
      "Probability of Defaulting") 
  print(probsGauss) 
  barplot(probsClay, main="Probability of (x) Bonds Defaulting 
      using the Clayton Copula", xlab="Number of Bonds",  
      ylab="Probability of Defaulting") 
  print(probsClay) 
  barplot(probsClay, main="Probability of (x) Bonds Defaulting 
      using the t-Copula", xlab="Number of Bonds", ylab= 
      "Probability of Defaulting") 
  print(probsT) 
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  # Toy Model Value of a C.D.O. 
  # Traunches = "senior" and "equity"  
  if (toy.model == TRUE) 
  { 
    # Calculate percentage of Senior bonds and percentage of Equity bonds 
    senior = 0.8*bonds 
    equity = 0.2*bonds 
    is.wholenumber = function(x, tol = .Machine$double.eps^0.5)  abs(x - round(x)) < tol 
     
    # Ensure that the portfolio can be split 80:20  
    if (is.wholenumber(senior) == FALSE) 
    { 
      stop("Error 0.8*bonds must be equal to a whole number; cannot run toy model.") 
    } 
    else 
    { 
      # Define variables for returns as determined by the Gaussian 
      # copula 
      seniorGauss = c() 
      equityGauss = c() 
       
      # Paying each Investor based off of the number of defaults as  
      # determined by the Gaussian copula  
      for (i in 1:N) 
      {  
        # If less than 20% of the bonds default, both traunches are paid  
        if (numDefaultsGauss[i] < equity) 
        { 
          equity2 = bonds - numDefaultsGauss[i] - senior 
          seniorGauss = rbind(seniorGauss, senior) 
          equityGauss = rbind(equityGauss, equity2) 
        } 
         
        # Else if more than 20% of the bonds default, the Senior traunche  
        # is paid the number of bonds minus the number of defaults and the Equity  
        # traunche is not paid at all  
        else if (numDefaultsGauss[i] >= equity) 
        {  
          seniorGauss = rbind(seniorGauss, bonds-numDefaultsGauss[i]) 
          equityGauss = rbind(equityGauss, 0) 
        } 
         
        # Print what percentage has been completed  
        if (i%%(0.1*N) == 0) 
        { 
          print(paste(100*(i/N), "% complete when using Gaussian Copula.")) 
        } 
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        # Index counter 
        i = i+1 
      } 
       
      # Calculate the returns probability for each traunche  
      probsSeniorGauss = table(seniorGauss)/N 
      probsEquityGauss = table(equityGauss)/N 
       
      # Calculate the expected value for each traunche 
      expectedSeniorGauss = sum(probsSeniorGauss*as.integer(names(probsSeniorGauss))) 
      expectedEquityGauss = sum(probsEquityGauss*as.integer(names(probsEquityGauss))) 
       
      # Print results when utilizing the Gaussian copula 
      barplot(probsSeniorGauss, main="Probability of $(x) Returns to Senior Traunche 
          using the Gaussian Copula", xlab="Number Dollars Returned", ylab= 
          "Probability of Receiving Said Amount") 
      print(probsSeniorGauss) 
      print(paste(expectedSeniorGauss, "= Estimate of Expected value for Senior Traunche  
           (Gaussian)")) 
      barplot(probsEquityGauss, main="Probability of $(x) Returns to Equity Traunche 
          using the Gaussian Copula", xlab="Number Dollars Returned", ylab= 
          "Probability of Receiving Said Amount") 
      print(probsEquityGauss) 
      print(paste(expectedEquityGauss, "= Estimate of Expected value for Equity Traunche  
           (Gaussian)")) 
       
      # Define variables for returns as determined by the Clayton  
      # copula 
      seniorClay = c() 
      equityClay = c() 
       
      # Paying each Investor based off of the number of defaults as  
      # determined by the Clayton copula  
      for (i in 1:N) 
      { 
        # If less than 20% of the bonds default, both traunches are paid  
        if (numDefaultsClay[i] < equity) 
        { 
          equity2 = bonds - numDefaultsClay[i] - senior 
          seniorClay = rbind(seniorClay, senior) 
          equityClay = rbind(equityClay, equity2) 
        } 
         
        # Else if more than 20% of the bonds default, the Senior traunche  
        # is paid the number of bonds minus the number of defaults and the Equity  
        # traunche is not paid at all  
        else if (numDefaultsClay[i] >= equity) 
        { 
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          seniorClay = rbind(seniorClay, bonds-numDefaultsClay[i]) 
          equityClay = rbind(equityClay, 0) 
        } 
         
        # Print what percentage has been completed  
        if (i%%(0.1*N) == 0) 
        { 
          print(paste(100*(i/N), "% complete when using Clayton Copula.")) 
        } 
         
        # Index counter 
        i = i+1 
      } 
       
      # Calculate the returns probability for each traunche  
      probsSeniorClay = table(seniorClay)/N 
      probsEquityClay = table(equityClay)/N 
       
      # Calculate the expected value for each traunche 
      expectedSeniorClay = sum(probsSeniorClay*as.integer(names(probsSeniorClay))) 
      expectedEquityClay = sum(probsEquityClay*as.integer(names(probsEquityClay))) 
       
      # Print results when utilizing the Clayton copula 
     barplot(probsSeniorClay, main="Probability of $(x) Returns to Senior Traunche 
          using the Clayton Copula", xlab="Number Dollars Returned", ylab= 
          "Probability of Receiving Said Amount") 
      print(probsSeniorClay) 
      print(paste(expectedSeniorClay, "= Estimate of Expected value for Senior Traunche  
           (Clayton)")) 
     barplot(probsEquityClay, main="Probability of $(x) Returns to Equity Traunche 
          using the Clayton Copula", xlab="Number Dollars Returned", ylab= 
          "Probability of Receiving Said Amount") 
      print(probsEquityClay) 
      print(paste(expectedEquityClay, "= Estimate of Expected value for Equity Traunche  
           (Clayton)")) 
       
      # Define variables for returns as determined by the t-copula 
      seniorT = c() 
      equityT = c() 
       
      # Paying each Investor based off of the number of defaults as  
      # determined by the t-copula  
      for (i in 1:N) 
      { 
        # If less than 20% of the bonds default, both traunches are paid  
        if (numDefaultsT[i] < equity) 
        { 
          equity2 = bonds - numDefaultsT[i] - senior 
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          seniorT = rbind(seniorT, senior) 
          equityT = rbind(equityT, equity2) 
        } 
         
        # Else if more than 20% of the bonds default, the Senior traunche  
        # is paid the number of bonds minus the number of defaults and the Equity  
        # traunche is not paid at all  
        else if (numDefaultsT[i] >= equity) 
        { 
          seniorT = rbind(seniorT, bonds-numDefaultsT[i]) 
          equityT = rbind(equityT, 0) 
        } 
         
        # Print what percentage has been completed  
        if (i%%(0.1*N) == 0) 
        { 
          print(paste(100*(i/N), "% complete when using Clayton Copula.")) 
        } 
         
        # Index counter 
        i = i+1 
      } 
       
      # Calculate the returns probability for each traunche  
      probsSeniorT = table(seniorT)/N 
      probsEquityT = table(equityT)/N 
       
      # Calculate the expected value of each traunche 
      expectedSeniorT = sum(probsSeniorT*as.integer(names(probsSeniorT))) 
      expectedEquityT = sum(probsEquityT*as.integer(names(probsEquityT))) 
       
      # Print results when utilizing the t-copula 
      barplot(probsSeniorT, main="Probability of $(x) Returns to Senior Traunche 
          using the t-Copula", xlab="Number Dollars Returned", ylab= 
          "Probability of Receiving Said Amount") 
      print(probsSeniorT) 
      print(paste(expectedSeniorT, "= Estimate of Expected value for Senior Traunche  
          (t-Copula)")) 
      barplot(probsEquityT, main="Probability of $(x) Returns to Equity Traunche 
          using the t-Copula", xlab="Number Dollars Returned", ylab= 
          "Probability of Receiving Said Amount") 
      print(probsEquityT) 
      print(paste(expectedEquityT, "= Estimate of Expected value for Equity Traunche  
           (t-Copula)")) 
 
    } 
  }  
} 
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II. ESTIMATING PARAMETER VALUES 

 
# This function creates sets of portfolios generated by three different copulas,  
# identical to those generated in the original model implemented by "defaultSim()."  
# Then, again like the previous function, this function estimates the lifetimes  
# of all bonds for each grouping of portfolios by means of a specific quantile  
# function. Since this is a much simpler function than the last, and since it is  
# not part of the main body of code, the quantile function is edited manually as 
# need. In this particular showing, the quantile function for the exponential  
# distribution is shown.  
 
corCopula = function(N, d, gauss.par, clay.par, t.par) 
{ 
  # Set seed  
  set.seed(10) 
   
  # Generate portfolios using the copulas  
  library(copula) 
  myGaussian=rCopula(N,normalCopula(gauss.par, d)) 
  myClayton = rCopula(N,claytonCopula(clay.par, d)) 
  myT = rCopula(N, tCopula(t.par, d)) 
   
  # Estimate lifetimes of all bonds  
  myGaussianlifetimes=qexp(myGaussian, 0.5) 
  myClaylifetimes = qexp(myClayton, 0.5) 
  myTlifetimes = qexp(myT, 0.5) 
   
  # Compute correlation matrices for each data set 
  cor1 = cor(myGaussianlifetimes) 
  cor2 = cor(myClaylifetimes) 
  cor3 = cor(myTlifetimes) 
   
  # Print correlations matrices 
  print(cor1) 
  print(cor2) 
  print(cor3) 
}  
 

III. MODIFIED CODE FOR ESTIMATING PARAMETER VALUES 
 
corCopula = function(N, d, gauss.par, clay.par, t.par) 
{ 
  # Set seed  
  set.seed(10) 
   
  # Generate portfolios using the copulas  
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  library(copula) 
  myGaussian=rCopula(N,normalCopula(gauss.par, d)) 
  myClayton = rCopula(N,claytonCopula(clay.par, d)) 
  myT = rCopula(N, tCopula(t.par, d)) 
   
  # Estimate lifetimes of all bonds  
  marginal = -log(0.9893) 
  myGaussianlifetimes=qexp(myGaussian, marginal) 
  myClaylifetimes = qexp(myClayton, marginal) 
  myTlifetimes = qexp(myT, marginal) 
   
  # Compute correlation matrices for each data set 
  cor1 = cor(myGaussianlifetimes) 
  cor2 = cor(myClaylifetimes) 
  cor3 = cor(myTlifetimes) 
   
  # Print correlations matrices 
  print(cor1) 
  print(cor2) 
  print(cor3) 
} 
 

IV. MODIFIED ORIGINAL MODEL 
 
# The R code listed in this section omits the majority of the text that defines the function  
# defaultSim() since it is same as that of the original model. The only modifications that  
# have been made are to the toy model of CDO. 
 
defaultSim = function(seed, N, bonds, dist1, dist2, gauss.par.1, clay.par.1, t.par.1,  
                      gauss.par.2, clay.par.2, t.par.2, life.par, horizon, toy.model=F) 
{ 
  … 
  # Toy Model Value of a C.D.O. 
  # Traunches = "senior," "mezzanine," and "junior"  
  if (toy.model == TRUE) 
  { 
    # Calculate percentage of Senior bonds and percentage of Equity bonds 
    senior = 0.88*bonds 
    mezzanine = 0.06*bonds 
    junior = 0.06*bonds 
    is.wholenumber = function(x, tol = .Machine$double.eps^0.5)  abs(x - round(x)) < tol 
     
    # Ensure that the portfolio can be split 80:20  
    if (is.wholenumber(senior) == FALSE) 
    { 
      stop("Error 0.88*bonds must be equal to a whole number; cannot run toy model.") 
    } 
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    else 
    { 
      # Define variables for returns as determined by the Gaussian 
      # copula 
      seniorGauss = c() 
      mezzanineGauss = c() 
      juniorGauss = c() 
       
      # Paying each Investor based off of the number of defaults as  
      # determined by the Gaussian copula  
      for (i in 1:N) 
      {  
        # If less than 6% of the bonds default, all traunches are paid  
        if (numDefaultsGauss[i] <= junior) 
        { 
          junior2 = bonds - numDefaultsGauss[i] - senior - mezzanine 
          seniorGauss = rbind(seniorGauss, senior) 
          mezzanineGauss = rbind(mezzanineGauss, mezzanine) 
          juniorGauss = rbind(juniorGauss, junior2) 
        } 
         
        # Else if more than 6%, but less than 12% of the bonds default only the senior  
        # traunche and the mezzanine traunche are paid 
        else if (numDefaultsGauss[i] > junior & numDefaultsGauss[i] <= 2*mezzanine) 
        {  
          mezzanine2 = bonds - numDefaultsGauss[i] - senior 
          seniorGauss = rbind(seniorGauss, senior) 
          mezzanineGauss = rbind(mezzanineGauss, mezzanine2) 
          juniorGauss = rbind(juniorGauss, 0) 
        } 
         
        # Else if more than 12% of the bonds default, only the senior traunche is paid 
        else if (numDefaultsGauss[i] > 2*mezzanine) 
        { 
          senior2 = senior - numDefaultsGauss[i] 
          seniorGauss = rbind(seniorGauss, senior2) 
          mezzanineGauss = rbind(mezzanineGauss, 0) 
          juniorGauss = rbind(juniorGauss, 0) 
        } 
         
        # Print what percentage has been completed  
        if (i%%(0.1*N) == 0) 
        { 
          print(paste(100*(i/N), "% complete when using Gaussian Copula.")) 
        } 
         
        # Index counter 
        i = i+1 
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      } 
       
      # Calculate the returns probability for each traunche  
      probsSeniorGauss = table(seniorGauss)/N 
      probsMezzanineGauss = table(mezzanineGauss)/N 
      probsJuniorGauss = table(juniorGauss)/N 
       
      # Calculate the expected value for each traunche 
      expectedSeniorGauss = sum(probsSeniorGauss*as.integer(names(probsSeniorGauss))) 
      expectedMezzanineGauss =  

  sum(probsMezzanineGauss*as.integer(names(probsMezzanineGauss))) 
      expectedJuniorGauss = sum(probsJuniorGauss*as.integer(names(probsJuniorGauss))) 
       
      # Print results when utilizing the Gaussian copula 
      barplot(probsSeniorGauss, main="Probability of $(x) Returns to Senior Traunche 
              using the Gaussian Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
      print(probsSeniorGauss) 
      print(paste(expectedSeniorGauss, "= Estimate of Expected value for Senior Traunche  

  (Gaussian)")) 
      barplot(probsMezzanineGauss, main="Probability of $(x) Returns to Mezzanine  

  Traunche using the Gaussian Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
      print(probsMezzanineGauss) 
      print(paste(expectedMezzanineGauss, "= Estimate of Expected value for Mezzanine  

  Traunche (Gaussian)")) 
      barplot(probsJuniorGauss, main="Probability of $(x) Returns to Junior Traunche 
              using the Gaussian Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
      print(probsJuniorGauss) 
      print(paste(expectedJuniorGauss, "= Estimate of Expected value for Junior Traunche  

  (Gaussian)")) 
 
      # Define variables for returns as determined by the Clayton 
      # copula 
      seniorClay = c() 
      mezzanineClay = c() 
      juniorClay = c() 
         
      # Paying each Investor based off of the number of defaults as  
      # determined by the Clayton copula  
      for (i in 1:N) 
      {  
        # If less than 6% of the bonds default, all traunches are paid  
        if (numDefaultsClay[i] <= junior) 
        { 
          junior2 = bonds - numDefaultsClay[i] - senior - mezzanine 
          seniorClay = rbind(seniorClay, senior) 
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          mezzanineClay = rbind(mezzanineClay, mezzanine) 
          juniorClay = rbind(juniorClay, junior2) 
          } 
           
          # Else if more than 6%, but less than 12% of the bonds default, only the senior  
          # traunche and the mezzanine traunche are paid 
          else if (numDefaultsClay[i] > junior & numDefaultsClay[i] <= 2*mezzanine) 
          {  
            mezzanine2 = bonds - numDefaultsClay[i] - senior 
            seniorClay = rbind(seniorClay, senior) 
            mezzanineClay = rbind(mezzanineClay, mezzanine2) 
            juniorClay = rbind(juniorClay, 0) 
          } 
           
          # Else if more than 12% of the bonds default, only the senior traunche is paid 
          else if (numDefaultsClay[i] > 2*mezzanine) 
          { 
            senior2 = senior - numDefaultsClay[i] 
            seniorClay = rbind(seniorClay, senior2) 
            mezzanineClay = rbind(mezzanineClay, 0) 
            juniorClay = rbind(juniorClay, 0) 
          } 
           
          # Print what percentage has been completed  
          if (i%%(0.1*N) == 0) 
          { 
            print(paste(100*(i/N), "% complete when using Clayton Copula.")) 
          } 
           
          # Index counter 
          i = i+1 
        } 
         
        # Calculate the returns probability for each traunche  
        probsSeniorClay = table(seniorClay)/N 
        probsMezzanineClay = table(mezzanineClay)/N 
        probsJuniorClay = table(juniorClay)/N 
         
        # Calculate the expected value for each traunche 
        expectedSeniorClay = sum(probsSeniorClay*as.integer(names(probsSeniorClay))) 
        expectedMezzanineClay =  

  sum(probsMezzanineClay*as.integer(names(probsMezzanineClay))) 
        expectedJuniorClay = sum(probsJuniorClay*as.integer(names(probsJuniorClay))) 
         
        # Print results when utilizing the Clayton copula 
        barplot(probsSeniorClay, main="Probability of $(x) Returns to Senior Traunche 
              using the Clayton Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
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        print(probsSeniorClay) 
        print(paste(expectedSeniorClay, "= Estimate of Expected value for Senior Traunche  

  (Clayton)")) 
        barplot(probsMezzanineClay, main="Probability of $(x) Returns to Mezzanine  

  Traunche using the Clayton Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
        print(probsMezzanineClay) 
        print(paste(expectedMezzanineClay, "= Estimate of Expected value for Mezzanine  

  Traunche (Clayton)")) 
        barplot(probsJuniorClay, main="Probability of $(x) Returns to Junior Traunche 
              using the Clayton Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
        print(probsJuniorClay) 
        print(paste(expectedJuniorClay, "= Estimate of Expected value for Junior Traunche  

  (Clayton)")) 
       
      # Define variables for returns as determined by the t-copula 
      seniorT = c() 
      mezzanineT = c() 
      juniorT = c() 
       
      # Paying each Investor based off of the number of defaults as  
      # determined by the t-copula  
      for (i in 1:N) 
      {  
        # If less than 6% of the bonds default, all traunches are paid  
        if (numDefaultsT[i] <= junior) 
        { 
          junior2 = bonds - numDefaultsT[i] - senior - mezzanine 
          seniorT = rbind(seniorT, senior) 
          mezzanineT = rbind(mezzanineT, mezzanine) 
          juniorT = rbind(juniorT, junior2) 
        } 
         
        # Else if more than 6%, but less than 12% of the bonds default, only the senior  
        # traunche and the mezzanine traunche are paid 
        else if (numDefaultsT[i] > junior & numDefaultsT[i] <= 2*mezzanine) 
        {  
          mezzanine2 = bonds - numDefaultsT[i] - senior 
          seniorT = rbind(seniorT, senior) 
          mezzanineT = rbind(mezzanineT, mezzanine2) 
          juniorT = rbind(juniorT, 0) 
        } 
         
        # Else if more than 12% of the bonds default, only the senior traunche is paid 
        else if (numDefaultsT[i] > 2*mezzanine) 
        { 
          senior2 = senior - numDefaultsT[i] 
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          seniorT = rbind(seniorT, senior2) 
          mezzanineT = rbind(mezzanineT, 0) 
          juniorT = rbind(juniorT, 0) 
        } 
         
        # Print what percentage has been completed  
        if (i%%(0.1*N) == 0) 
        { 
          print(paste(100*(i/N), "% complete when using Clayton Copula.")) 
        } 
         
        # Index counter 
        i = i+1 
      } 
       
      # Calculate the returns probability for each traunche  
      probsSeniorT = table(seniorT)/N 
      probsMezzanineT = table(mezzanineT)/N 
      probsJuniorT = table(juniorT)/N 
       
      # Calculate the expected value for each traunche 
      expectedSeniorT = sum(probsSeniorT*as.integer(names(probsSeniorT))) 
      expectedMezzanineT = sum(probsMezzanineT*as.integer(names(probsMezzanineT))) 
      expectedJuniorT = sum(probsJuniorT*as.integer(names(probsJuniorT))) 
       
      # Print results when utilizing the t-copula 
      barplot(probsSeniorT, main="Probability of $(x) Returns to Senior Traunche 
              using the t-Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
      print(probsSeniorT) 
      print(paste(expectedSeniorT, "= Estimate of Expected value for Senior Traunche (t- 

  Copula)")) 
      barplot(probsMezzanineT, main="Probability of $(x) Returns to Mezzanine Traunche 
              using the t-Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
      print(probsMezzanineT) 
      print(paste(expectedMezzanineT, "= Estimate of Expected value for Mezzanine  

  Traunche (t-Copula)")) 
      barplot(probsJuniorT, main="Probability of $(x) Returns to Junior Traunche 
              using the t-Copula", xlab="Number Dollars Returned", ylab= 
              "Probability of Receiving Said Amount") 
      print(probsJuniorT) 
      print(paste(expectedJuniorT, "= Estimate of Expected value for Junior Traunche (t- 

  Copula)")) 
       
    } 
  }  
} 


