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Abstract

In recent years, numerous studies have employed regression discontinuity designs with many cutoffs as-

signing individuals to heterogeneous treatments. A common practice is to normalize all of the cutoffs to

zero and estimate only one effect. This procedure identifies the average of local treatment effects weighted

by the observed relative density of individuals at the existing cutoffs. However, researchers often want to

make inferences on more meaningful average treatment effects (ATE) computed over general counterfactual

distributions of individuals rather than simply the observed distribution of individuals local to existing cut-

offs. In this paper, we propose a root-n consistent and asymptotically normal estimator for such ATEs when

heterogeneity follows a non-parametric smooth function of cutoff characteristics. In the case of parametric

heterogeneity, observations are optimally combined to minimize the mean squared error of the ATE esti-

mator. Inference results are also provided for the fuzzy regression discontinuity case, where the parametric

heterogeneity assumption yields identification of treatment effects on individuals who comply with at least

one of the multiple treatments.
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1 Introduction

One of the fundamental problems in economic analyses with observational data is that

we do not see the counterfactual scenario needed to make causal inferences. When the re-

searcher has a theoretical relationship among variables in mind, it is the task of econometrics

to derive minimal conditions for this relationship such that the causal effect is identified and

feasible to estimate (White and Chalak (2013), Heckman and Vytlacil (2007)). Applications

of regression discontinuity design (RDD) have become increasingly popular in economics

since the late 1990s (Black (1999), Angrist and Lavy (1999), Van der Klaauw (2002)). One

of RDD’s main advantages is the identification of a local causal effect under minimal func-

tional form assumptions. More recently, with the increasing availability of richer data sets,

there have been many applications with multiple cutoffs and treatments (e.g. Ajayi (2014),

Hastings, Neilson, and Zimmerman (2013), Pop-Eleches and Urquiola (2013), Garibaldi, Gi-

avazzi, Ichino, and Rettore (2012), Saavedra (2008)). Existing one-cutoff RDD methods can

be applied to each cutoff individually but yield local effects that are estimated using only

a few observations near each cutoff. Researchers often prefer one takeaway summary effect

that can be more precisely estimated by using all the data. The ability to combine observa-

tions from various cutoffs depends crucially on heterogeneity assumptions connecting local

treatment effects.

Many existing applied studies with multiple cutoffs simply normalize all cutoffs to zero

and use the one-cutoff estimator. If treatment effects are heterogeneous, this normalization

procedure estimates an average of local treatment effects weighted by the relative density of

individuals near each of the cutoffs (Cattaneo, Keele, Titiunik, and Vazquez-Bare (2014)).

Such an average effect would be a meaningful summary measure only in two cases: (i)

all local treatment effects are identical and the weighting scheme does not matter; (ii) the

researcher is interested in the average effect of heterogeneous treatments only on the observed

distribution of individuals near the existing cutoffs of such treatments. However, researchers

are often interested in combining observed data with assumptions weaker than (i) to make
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inferences on counterfactual scenarios more general than (ii).1

The inference procedure of our paper estimates an average of local treatment effects

(ALTE) that is a more valuable summary measure than the average effect identified by the

normalization procedure because the weighting scheme can be explicitly chosen according to

the counterfactual scenario of interest. For applications with substantial variation in cutoff

values, we also propose a corrected weighting scheme that allows for inference on an even

more valuable summary measure, which is the average treatment effect (ATE) computed

over an explicitly chosen distribution of individuals including individuals away from existing

cutoffs.

We motivate our framework for RDD with many thresholds using a simple example

based on Pop-Eleches and Urquiola (2013), PEU from now on. They study the assignment

of students to more or less elite high schools based on test scores where every town has

its own set of minimum admission cutoffs scores and each town’s cutoffs vary from year to

year. Using a wealth of variation of nearly 2,000 cutoffs from the high school assignment in

Romania, PEU provides rigorous evidence of the impacts of going to a better school on the

academic performance of students and on the behavior of parents and teachers. The economic

logic of their application can be briefly summarized as follows.2 Suppose there is a central

planner who assigns students to high schools based on the students’ scores on a placement

test. High schools have limited capacity and can be ranked by some measure of quality. The

central planner ranks students by their scores and assigns each of them to the best school

available. Each student i submits her score Xi (forcing variable) to the central planner who

based on the entire distribution of scores determines a minimum test score cj (cutoff or

1In a RDD setting with multiple cutoffs and treatments, it is unreasonable to expect that different local
treatment effects are always identical. For example, Pop-Eleches and Urquiola (2013) finds that the impact
of going to a better high school on academic achievement is heterogeneous across students with different
ability levels. Another example is De La Mata (2012) who finds that the eligibility for Medicaid benefits,
which depends on your income being below a threshold, decreases the probability of having private health
insurance more strongly for lower income thresholds.

2The purpose of the simple example in the paragraph above is to introduce the reader to the framework
of RDD with multiple cutoffs. The details of PEU’s application are described in our application section.
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threshold) for admission to each high school j in each town.3 The quality of high school j is

denoted dj, and different school qualities expose students to different treatment doses across

cutoffs cj. We are interested in the treatment effect of high school quality on the student

i’s academic achievement Yi (outcome variable). This effect is not immediately identified

because we never observe the same students attending high schools of different qualities. As

the test score crosses an admission threshold cj, the quality of the school the student attends

changes from dj−1 to dj. By comparing students with test scores just below the cutoff to

students with scores just above the cutoff, RDD allows identification of the impact of school

quality on the average academic achievement of those students with test scores equal to cj.

We denote such local treatment effect by the average βj = E[Yi(dj) − Yi(dj−1)|Xi = cj],

where Yi(dj) is the potential academic achievement student i has if attending a high school

of quality dj, and E[.] denotes expected value over the distribution of students. The two

sources of heterogeneity for local treatment effects are the different cutoff values and changes

in treatment doses across the different cutoffs.

PEU is a particularly illustrative application because it exhibits sufficient variation in

cutoff and treatment doses to generate ATEs with substantially greater economic relevance

than the typical average based on normalizing all of the cutoffs to zero. Nevertheless, there

are numerous other examples of RDD with many thresholds and heterogeneous treatments.

For instance, Saavedra (2008) studies admission into more or less elite colleges where each

college has its own cutoff that varies by year. Angrist and Lavy (1999) and Hoxby (2000) use

class size rules to estimate the impact of class size on student achievement. In Hoxby (2000),

the variation in cutoff values arises from specific school district class size rules. Several studies

exploit different school starting dates to estimate the impact of educational attainment on

various outcomes, e.g. Dobkin and Ferreira (2010), McCrary and Royer (2011). Duflo,

Dupas, and Kremer (2011) analyzes school cohorts that are split into low and high-achieving

3For the sake of exposition, we assume for now that students attend the best high school available to
them based on their score and the cutoffs that apply to them. In fact, some students may choose to attend
a lesser high school so that we have a fuzzy rather than a sharp RDD. We examine the fuzzy case later in
the paper.
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classes based on test scores, where each school has its own cutoff score. Garibaldi, Giavazzi,

Ichino, and Rettore (2012) looks at different income cutoffs that determine tuition subsidies

to study the impact of tuition payment on the probability of late graduation from university.

The rapid growth in the number of applications of RDD in Economics in the late 1990s

was accompanied by substantial theoretical contributions for inference in the one-cutoff case.

Identification both in the sharp and fuzzy cases were formalized by Hahn, Todd, and Van der

Klaauw (2001) who proposed estimation by local linear regression and derived its asymptotic

distribution. Local polynomial regressions are known for low order bias at boundary points

and rate optimality (Fan and Gijbels (1996), Porter (2003)). Recent theoretical contributions

have addressed the optimal bandwidth choice (Imbens and Kalyanaraman (2012)); alterna-

tive asymptotic approximations with better finite sample properties (Cattaneo, Calonico,

and Titiunik (2014)); quantile treatment effects (Frandsen, Frölich, and Melly (2012)) and

kink treatment effects (Dong (2014)).

More closely related to our contribution is the study of treatment effect extrapolation,

e.g. Angrist (2004), Bertanha and Imbens (2014), Angrist and Rokkanen (2013), and Rokka-

nen (2014). These last two papers use observations on additional covariates and restrict the

relation between the heterogeneity of treatment effects and these covariates to obtain iden-

tification away from the cutoff. Our results differ from theirs because we use the variation

of multiple cutoffs and doses to identify ATEs over distributions of individuals away from

cutoffs without restricting the heterogeneity of treatment effects. In short, there are many

applications with variation in cutoffs and treatment doses, but a lack of theoretical inves-

tigation on how to combine observations from all cutoffs to estimate economically relevant

average effects.

The ability to combine different local effects to estimate an average effect depends on

how comparable the researcher believes these effects are. We consider three cases of hetero-

geneity assumptions researchers could make about the comparability of treatment effects.

The cases are presented in increasing order of imposed structure. In the first case of hetero-
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geneity assumptions, the researcher does not believe changes in treatment doses dj−1 → dj

are quantitatively comparable across cutoffs cj. This would be the case in the high school

assignment example, if the quality of different schools cannot be credibly summarized in one

metric d. Another example is the RDD setup studied in Hastings, Neilson, and Zimmerman

(2013), where different score cutoffs assign students to different degree programs in Univer-

sities in Chile. One cutoff could switch students from Physics to Engineering and a second

cutoff from Engineering to Economics, and it is difficult to summarize these treatment dose

changes in one metric.

In the second case of heterogeneity assumptions, the researcher believes that treatment

doses are quantitatively comparable across cutoffs, and treatment effects vary smoothly with

changes in treatment dose. In the high school assignment example, PEU measures high school

quality using average student performance in each school. They find behavioral evidence that

parents and teachers perceive the schools’ quality based on this measure. Another example

of multiple cutoffs with comparable treatment doses is the case where there is one type

of treatment triggered by one cutoff, but this one cutoff varies across subpopulations (e.g.

towns, years, states). This is the case of Medicaid benefits for children studied in De La Mata

(2012), where each state (subpopulation) has its own income threshold for Medicaid coverage

eligibility (one treatment).

In the third case of heterogeneity assumptions, the researcher is willing to specify a

parametric functional form for the treatment effect function β(x, d, d′) = E[Yi(d
′)−Yi(d)|Xi =

x]. Economic theory or a priori knowledge guides the choice of a functional form that credibly

summarizes the heterogeneity of treatment effects. In the high school assignment example,

researchers could assume that returns to better education follow a polynomial function of

scores and school quality to test for varying marginal returns. In a class size application like

Hoxby (2000), a researcher could impose a functional form based on Lazear (2001)’s model

of achievement as a function of class size.

This paper proposes consistent and asymptotically normal estimation procedures for
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weighted average treatment effects. The interpretation of the average effect and the esti-

mation procedure depends on the case of heterogeneity assumptions. In the first case of

heterogeneity assumptions, the average effect is a weighted average of local treatment effects

(ALTE) computed at the finite number of cutoffs observed in the data. Such an ALTE is

a meaningful summary measure for counterfactual scenarios that weight individuals local to

the existing cutoffs. In the high school assignment example, suppose one town decides to

marginally expand capacity of some of its best high schools. Students that are currently near

the admission cutoffs of such schools will be granted access to better school quality. The

relative proportion of capacity increase across targeted high schools produces the relevant

weighting scheme for the ALTE of this policy.

In the second case of heterogeneity assumptions, the treatment effects are described by

a smooth function of cutoffs and doses. The average treatment effect (ATE) is a weighted

integral of the treatment effect function β(.) over a set that envelops the variation of cutoffs

and dose changes observed in the data. Such an ATE is a meaningful summary measure

for counterfactual scenarios that weight individuals not only at the existing cutoffs but also

between cutoffs. For example, suppose a new ‘charter’ school in a given town admits students

by randomly drawing from a target population. This target population has a distribution

of scores within the support of the observed distribution of scores in the data. The relevant

ATE averages over the entire distribution of students that are granted access to this higher

quality charter school, which includes scores between the existing cutoff values. Finally, in

the third case of heterogeneity assumptions, interest lies not only in the ATE, which is the

weighted integral of the parametric treatment effect function, but also on the parameters

of this function. For example, a polynomial functional form on scores and average peer

performance can be used to test the hypothesis that the returns of going to a better school

is constant over scores.

The estimation procedure for the ALTEs and ATEs consists of two steps. The first step

is identical in all three cases of heterogeneity assumptions. In the first step, we estimate
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the local treatment effects at each cutoff non-parametrically by local polynomial regression.

The second step depends on the case of heterogeneity assumptions the researcher is willing

to make. In the first case of heterogeneity assumptions, the second step estimate for the

ALTE is a simple weighted average of first step estimates, where the researcher chooses

the weighting scheme. In the second case of heterogeneity assumptions, the second step

estimation consists of estimating the function β(x, d, d′) non-parametrically using a local

polynomial regression of the first step estimates on cutoff values (x, d, d′). The estimator for

the ATE is simply the weighted integral of the estimated function β̂(x, d, d′) over a set of

values (x, d, d′) that envelops the finite set of observed cutoff values. The researcher specifies

the weighting density over this set according to the relevant counterfactual scenario.

A key contribution of this paper is the inference on the ATE in RDD when the treatment

effect function is unknown and of infinite dimension. Consistency for the integral ATE

requires an asymptotic sequence where both the number of observations and cutoffs go to

infinity. Our estimator for the ATE is asymptotically normal and its maximum convergence

rate is root-n. Lastly, in the third case of heterogeneity assumptions, estimates for the

parametric functional form are obtained by regressing the first step estimates on functions

of cutoff-dose values specified by the researcher. Observations from different cutoffs are

optimally weighted in this second step regression depending on the first step variance. The

ATE in the third case of heterogeneity assumptions is the weighted integral of the estimated

parametric functional form. We show consistency and asymptotic normality of all estimators.

Another advantage of the third case of heterogeneity assumptions is that a parametric

functional form gives identification in the fuzzy RDD case. In the high school assignment

example, when a student is accepted for a high school with peer-quality d, she may choose to

attend a different high school d′ in the fuzzy case. When there are many cutoffs, each cutoff

may exhibit its own compliance behavior. The observed average outcome of students around

cutoff c is a weighted average of potential outcomes Yi(d) for the different school qualities

d students choose to attend when their test score is near c. Thus, comparing the academic
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performance of students just below the cutoff to those just above gives a mix of treatment

effects of various doses.

To disentangle the different treatment effects, we make a minimal assumption about how

the behavior of students changes with their test score by ruling out ‘defiance’: if the test

score of a student currently attending high school B increases so as to grant her access to

high school A, we assume she either chooses to attend school A or stay at school B, and

that she is not triggered to attend some other school C. When she chooses school A, we

say she complies to the treatment eligibility change associated with the cutoff of school A.

We call a student ‘complier’ when she complies to the treatment change for at least one of

the cutoffs and does not respond to the treatment change of other cutoffs. No-defiance is

not a sufficient condition for identification of treatment effects on compliers in all cutoffs.

For example, suppose we have a town with three schools and two cutoffs. At the second

cutoff that grants admission to the best school, there could be compliers that change from

the worst school into the best school, and from the second best to the best school. We

only observe the average change in the outcome variable aggregated over these two types of

compliers and cannot separately identify their treatment effects without further functional

form assumptions. The parametric functional form and no-defiance are sufficient conditions

for identification of treatment effects on compliers. We provide a two-step estimator for such

a parametric functional form and show consistency and asymptotic normality.

The remainder of this paper is divided into three main sections for each case of hetero-

geneity assumptions. Section 2 sets up the notation for RDD with multiple cutoffs to be

used in all sections, describing the estimation procedure and providing sufficient conditions

for inference on the ALTE in the first case of heterogeneity assumptions. Section 3 derives

an estimator for the ATE and lays down sufficient conditions for valid inference in the sec-

ond case of heterogeneity assumptions. Section 4 explains the estimation procedure for the

parameters of a functional form specified by the researcher in the third case of heterogeneity

assumptions; sufficient conditions are given for the asymptotic inference in both the sharp
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and fuzzy RDD cases. Section 5 illustrates our methods using data from PEU. Section 6

concludes. The proofs are found in the Appendix.4

2 Average of Local Treatment Effects

In this section we assume the sharp RDD case and that the researcher believes that

changes in treatment doses do not bear any quantitative relationship across cutoffs. Indi-

viduals are subject to different treatments across cutoffs, but the treatment dose cannot be

summarized into a scalar variable. First, we define the notation for the sharp RDD with

multiple thresholds. Second, we re-state an already known identification result in terms

of framework of multiple thresholds. Third, we define an average treatment effect (ATE)

parameter where the researcher chooses the weighting scheme. Fourth, we describe an es-

timation procedure for this ATE and show consistency and asymptotic normality when the

sample size grows large but the number of cutoffs i held fixed.

There are many cutoffs c defined on one scalar forcing variable X that assign individuals

to different treatment doses defined by the variable D. In this section, the variable D can be

some qualitative measure of the treatment received. This assignment mechanism is observed

for different sub-populations of individuals where the cutoffs and doses vary according to the

sub-population. In the example of high school assignment, a sub-population is a town-year.

Random variables for each individual are indexed by ‘i’. The forcing variable of individual ‘i’

is denoted by Xi and lives in a compact interval X = [X ,X ]. The set of possible treatment

doses is defined as D = [D,D], also a compact interval. The discrete variable Pi takes values

in P = {1, · · · , P} and indicates the sub-population of individual ‘i’. In sub-population

p ∈ P , each cutoff cp,j is indexed by j ∈ Jp = {1, . . . , K(p)} where K(p) is total number

of cutoffs in sub-population p and c1,p < c2,p < . . . < cK(p),p. In this section the assignment

is sharp which means that an individual with forcing variable Xi in sub-population Pi is

deterministically assigned to treatment dose Di = D(Xi, Pi) for some known assignment

4The Appendix is available online at www.stanford.edu/∼bertanha/Bertanha JMP appendix.pdf
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mapping D : X × P → D where

D(x, p) =



dp,0 if cp,0 ≤ x < cp,1

dp,1 if cp,1 ≤ x < cp,2
...

dp,K(p) if cp,K(p) ≤ x ≤ cp,K(p)+1

(1)

with c0,p = X , cK(p)+1,p = X . The schedule of cutoffs and treatment doses in each sub-

population p ∈ P is given by the non-random set {cp,j, dp,j−1, dp,j}j∈Jp .
5 The total number

of cutoffs from all sub-populations is K =
∑

p∈P K(p).6

We follow the modern literature on treatment effects and use Rubin’s model of potential

outcomes (Rubin (1974), Imbens and Lemieux (2008)). The potential outcome for indi-

vidual ‘i’ if she receives treatment dose ‘d’ is denoted as the random variable Yi(d). The

data generating process can be summarized as follows. Values for the forcing variable Xi,

sub-population Pi and potential outcomes {Yi(d)}d∈D are drawn iid i = 1, ..., n from some

joint distribution. Given the mapping D(x, p), these n individuals are assigned to different

treatment doses Di = D(Xi, Pi). The observed outcome Yi is given by

Yi =
∑
p∈P

∑
j∈J 0

p

Yi(dp,j)I{Di = dp,j, Pi = p}

where J 0
p = Jp ∪ {0} = {0, 1, . . . , K(p)}, and I{·} is the indicator function.

5The validity of the RDD depends crucially on the exogeneity of cutoffs and no manipulation of the
forcing variable X by individuals. See McCrary (2008) for a test of forcing variable manipulation. Bajari,
Hong, Park, and Town (2011) presents a modified RDD estimator that is consistent under forcing variable
manipulation in a class of structural models.

6Each cutoff cp,j has a change in treatment dose dp,j 6= dp,j−1. Note that the assignment function and
schedule of cutoffs defined above accommodates different deterministic assignment schemes based on cutoffs
for one forcing variable. In the high school assignment example, the ranking of admission cutoffs may not
correspond to the ordering of school qualities if students are allowed to attend a school different than the
initial assignment. Our definition of cutoffs above can fit both the case where a student attends the best
high school into which she is admitted or the high school with the highest admission cutoff that is lower
than her test score. The number of cutoffs that corresponds to a change in treatment dose is different in
each case.
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The econometrician observes the schedule of cutoffs and treatment doses for all sub-

populations and (Yi, Xi, Di, Pi) for i = 1, ..., n. For individuals with a given value for the

forcing-variable and sub-population, the treatment effect is the average change in outcome

due to a change in treatment dose for these individuals. RDD identifies these treatment

effects for each cutoff value c of the forcing-variable in each sub-population p and for the

change in treatment dose d→ d′ associated with that cutoff. This treatment effect is denoted

as

β(c, d, d′, p) = E[Yi(d
′)− Yi(d)|Xi = c, Pi = p] (2)

It is widely known in the RDD literature that continuity of the conditional mean of

potential outcomes lead to identification of treatment effects at the cutoff values (Hahn,

Todd, and Van der Klaauw (2001)). This is re-stated in lemma 1 for the multiple cutoff

case.

Lemma 1. For any p ∈ P, j ∈ Jp, and d ∈ D, assume E[Yi(d)|Xi = x, Pi = p] is a

continuous function of x. Then, the treatment effects β(cp,j, dp,j−1, dp,j, p) for every p ∈ P

and j ∈ Jp are identified:

β(cp,j, dp,j−1, dp,j, p) = lim
e↓0
{E[Yi|Xi = cp,j + e, Pi = p]− E[Yi|Xi = cp,j − e, Pi = p]}

The goal of this paper is to exploit the variation in treatment effects that arises from

different cutoff-dose values. To combine treatments effects from various sub-populations we

make the following assumption

Assumption 1. For any d′, d ∈ D, x ∈ X , and p ∈ P

E[Yi(d
′)|Xi = x, Pi = p]− E[Yi(d)|Xi = x, Pi = p] = β(x, d, d′)
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This assumption says that individuals with the same observed forcing variable Xi that

undergo the same change in treatment dose d → d′ have the same average response across

different sub-populations. It does not restrict conditional means to be same across differ-

ent sub-populations which accommodates time-trends and sub-population fixed effects for

example.

There are two sources of heterogeneity for treatment effects across different cutoffs. Treat-

ment effects are expected to be heterogeneous because of different values of the forcing-

variable and changes in treatment doses. Researchers are often interested in summary mea-

sures of the different treatment effects. In this paper we work with average treatment effect

as a default summary measure. A common practice in applied work is to normalize all cutoffs

to zero in order to use existing estimation techniques for the one-cutoff case. This procedure

produces an estimate for an average effect weighted by unknown coefficients. An average

treatment effect is only informative when the researcher deliberately chooses how different

treatment effects are weighted. For example, a certain policy may have positive effects for

some values of the forcing variable but negative effects for other values. Depending on how

these effects are weighted, we may conclude the policy has no effect in a given population.

Existing data can be used to estimate an average treatment effect of the current policy

but also new policies. Each counterfactual scenario translates into a weighting scheme over

the observed cutoffs (cp,j, dp,j−1, dp,j). For example, a new policy may re-allocate students

across the existing schools. The choice of weighting scheme is such that ωp,j represents the

probability mass of students with test score close to cp,j that undergo a change in school

quality of dp,j−1 → dp,j. We define the average of local treatment effects (ALTE) for a set of

weights {ωp,j}p∈P,j∈Jp as

µALTE =
∑

p∈P,j∈Jp

ωp,j β(cp,j, dp,j−1, dp,j)
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The average treatment effect µALTE is identified under continuity of the conditional mean

of potential outcomes (Lemma 1) for any choice of weighting scheme. Note that the set of

counterfactuals for which this ALTE has meaning is restricted to the finite set of observed

cutoff-dose values. In the second case of heterogeneity assumptions, it is possible to define

an ATE for a much larger set of counterfactuals.

In what follows, we describe a two-step estimation procedure for µALTE. The main idea

of the first step is to use observations near each of the cutoffs cp,j to estimate the change in

conditional mean of Yi given Xi, Pi at cutoff cp,j. The main idea of the second step is average

out these estimates across the different cutoffs cp,j using the weights ωp,j. In the first step,

we obtain a non-parametric estimate of Bp,j where

Bp,j = lim
e↓0
{E[Yi|Xi = cp,j + e, Pi = p]− E[Yi|Xi = cp,j − e, Pi = p]} (3)

at each cutoff cp,j using local polynomial regression (LPR). By lemma 1, Bp,j = β(cp,j, dp,j−1, dp,j) ≡

βp,j. The researcher chooses a bandwidth parameter h > 0, a kernel density function k(.),

and the order of the polynomial regression ρ ∈ Z+.7 The bandwidth parameter defines a

neighborhood around each cutoff from which we use observations in the estimation. The

farther observations are from the cutoff, the less weight they receive which is determined by

the function k(.). We fit a polynomial in X on each side of the cutoff, and the estimator

B̂p,j is the difference between the intercept of these two polynomial regressions.

7Common choices in the applied literature for these are the edge kernel k(u) = I{|u| ≤ 1}(1 − u), ρ = 1
(local linear regression), and the optimal bandwidth proposed by Imbens and Kalyanaraman (2012).
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B̂p,j = â+
p,j − â−p,j (4)

(â+
p,j, b̂

+
p,j) = argmin

(a,b)

n∑
i=1

k
(
Xi−cp,j

h

)
vp,j+i [Yi − a− b1(Xi − cp,j)− . . .− bρ(Xi − cp,j)ρ]2 (5)

(â−p,j, b̂
−
p,j) = argmin

(a,b)

n∑
i=1

k
(
Xi−cp,j

h

)
vp,j−i [Yi − a− b1(Xi − cp,j)− . . .− bρ(Xi − cp,j)ρ]2 (6)

and vp,j+i = I{cp,j ≤ Xi < cp,j + h, Pi = p}, vp,j−i = I{cp,j − h < Xi < cp,j, Pi = p}.

The LPR estimator is known in the literature for its nice boundary properties and rate

optimality (Fan and Gijbels (1996), Porter (2003)). In the second step, the researcher

averages out B̂p,j to obtain the estimator µ̂ALTE for µALTE.

µ̂ALTE =
∑

p∈P,j∈Jp

ωp,jB̂p,j (7)

For the case of one sub-population, one cutoff, the asymptotic distribution of the RDD

treatment effect has been derived by Porter (2003). Minor adjustments give the distribution

of each B̂p,j and the weighted average. Asymptotic normality requires n → ∞ and h → 0.

Since the number of cutoffs K is fixed and h → 0, the neighborhoods around each cutoff

don’t overlap for large n. In large samples, each individual observation is used for only one

B̂p,j which makes B̂p,j ⊥ B̂p,l for j 6= l. Therefore, the asymptotic distribution of µ̂ALTE will

be the weighted sum of the asymptotic distributions of each B̂p,j. Below, we list sufficient

conditions for the asymptotic normality result in theorem 1.

Assumption 2. The kernel density function k : R→ R is symmetric, bounded, has compact

support [−M,M ], and can be written as the difference of two weakly increasing functions on

R.
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Assumption 3. (i) For every p ∈ P, Xi|Pi = p has probability density function fX|P (x, p)

and a bounded support X = [X ,X ]; fX|P (x, p) is bounded and bounded away from zero

uniformly on (x, p) ∈ X × P.

(ii) fX|P (x, p) is one time differentiable w.r.t x with partial derivative ∇xfX|P (x, p) bounded

on (x, p) ∈ X × P.

(iii) ∀p ∈ P, P(Pi = p) = qp > 0

Assumption 4. Let ρ ∈ Z+ be the order of the LPR.

(a) R(x, d, p) = E[Yi(d)|Xi = x, Pi = p] is ρ+ 1 times continuously differentiable w.r.t. x

with ρ+ 1-th partial derivative ∇ρ+1
x R(x, d, p)

(b) σ2(x, d, p) = E
{

[Yi(d)−R(x, d, p)]2 |Xi = x, Pi = p
}

is one time continuously differ-

entiable w.r.t. x with partial derivative ∇xσ
2(x, d, p)

Theorem 1. Suppose assumptions 1, 2, 3, 4 hold. As n→∞ and h→ 0, assume nh→∞

and
√
nhhρ+1 → C ∈ [0,∞). Then,

√
nh (µ̂ALTE − µALTE)

d→ N

(
C
∑
p,j

ωp,jBp,j;
∑
p,j

ω2
p,jVp,j

)

where

Bp,j =
1

(ρ+ 1)!

[
∇ρ+1
x m(c+

p,j, p)− (−1)ρ+1∇ρ+1
x m(c−p,j, p)

]
e′1Γ−1γ∗ (8)

Vp,j =
ζ2(c+

p,j, p) + ζ2(c−p,j, p)

fX|P (cp,j, p)qp
e′1Γ−1∆Γ−1e1 (9)
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∇ρ+1
x m(c+

p,j, p) = lim
x↓cp,j

∇ρ+1
x E[Yi|Xi = x, Pi = p]

∇ρ+1
x m(c−p,j, p) = lim

x↑cp,j
∇ρ+1
x E[Yi|Xi = x, Pi = p]

ζ2(c+
p,j, p) = lim

x↓cp,j
E
{

(Yi − E[Yi|Xi, Pi])
2
∣∣ Xi = x, Pi = p

}
ζ2(c−p,j, p) = lim

x↑cp,j
E
{

(Yi − E[Yi|Xi, Pi])
2
∣∣ Xi = x, Pi = p

}

Γ =


γ0 . . . γρ
...

...
...

γρ . . . γ2ρ

 and ∆ =


δ0 . . . δρ
...

...
...

δρ . . . δ2ρ


γ∗ = [γρ+1 . . . γ2ρ+1]′

e1 is the (ρ+ 1× 1) vector e1 = [1 0 0 · · · 0]′

γd =

∫ 1

0

k(u)uddu and δd =

∫ 1

0

k(u)2uddu

ρ is the order of the LPR

To perform inference using this asymptotic result, we need consistent estimators for

the asymptotic bias and variance in equations 8 and 9. The researcher chooses ρ and the

kernel density function k(.) which give γ∗, Γ and ∆; the bandwidth value can be used to

infer Ĉ =
√
nhhρ+1. It remains to estimate ∇ρ+1

x m(c±p,j, p), ζ
2(c±p,j, p), and fX|P (cp,j, p)qp

which is a straightforward non-parametric problem. For the side derivatives ∇ρ+1
x m(c±p,j, p),

a consistent estimator is obtained from a LPR of order ρ + 1 (equations 5 and 6) that uses

observations from each side of the cutoff cp,j. The estimator is simply the slope coefficient

on (x− cp,j)ρ+1. Lemma 7 in the Appendix shows consistency of this estimator. The density
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fX|P (cp,j, p)qp is consistently estimated (Silverman (1986)) by

f̂X,P (cp,j, p) =
1

nh

n∑
i=1

k

(
Xi − cp,j

h

)
I{Pi = p}

Porter (2003) suggests the following consistent estimation procedure for the side limits

of the variance ζ2(c±p,j, p):

m̂(x, p) =

1
nh

∑n
i=1 k

(
Xi−cp,j

h

)
I{Pi = p}

(
Yi −

∑
j∈Jp I{cp,j ≤ x}B̂p,j

)
f̂X,P (cp,j, p)

ε̂i = Yi − m̂(Xi, Pi)−
∑
j∈Jp

I{cp,j ≤ x}B̂p,j

ζ̂2(c+
p,j, p) =

1
nh

∑n
i=1 v

p,j+
i k

(
Xi−cp,j

h

)
ε̂2
i

1
2
f̂X,P (cp,j, p)

ζ̂2(c−p,j, p) =

1
nh

∑n
i=1 v

p,j−
i k

(
Xi−cp,j

h

)
ε̂2
i

1
2
f̂X,P (cp,j, p)

Using these estimators along with equations 8 and 9 and definitions of theorem 1, we

obtain estimators for the asymptotic variance and bias of µ̂ALTE. Alternative approaches to

compute the standard errors include bootstrapping (Hardle and Bowman (1988), Neumann

and Polzehl (1998)), and using empirical likelihood methods of Otsu, Xu, and Matsushita

(2014) to produce valid confidence intervals without having to estimate these asymptotic

objects.

3 General Average Treatment Effects

In the second case of heterogeneity assumptions, we assume the sharp RDD case and that

the researcher finds reasonable to summarize high school j’s quality using a scalar variable dj.

Moreover, the treatment effect βj is described by a smooth function β(.) of the admission

cutoffs cj and treatment doses (dj−1, dj) associated with cutoff j. Examples of measures
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of school quality include the average test score of peers, the average number of teachers

or funding per student. Using the treatment dose dj, different treatments can be related

to each other quantitatively. Provided we have sufficient variation in cutoff-doses across

sub-populations, these heterogeneity assumptions allows inference on an ATE computed

over a set of cutoff-doses values that envelops the finite set of cutoff-doses observed. We

start this section by defining such ATE parameter where the researcher chooses a weighting

scheme. Then, we describe an estimation procedure for this ATE and show consistency and

asymptotic normality when the sample size and the number of cutoffs grows large.

In the first case of heterogeneity assumptions, the set of counterfactuals for which we can

compute the ATE is limited to the finite set of cutoff-doses observed. It is unlikely that new

policies will have the same schedule of cutoffs and treatment doses as the policy we observe

in the data. The ability to compute weighted effects for cutoff and dose values beyond the

existing ones thus becomes crucial. Provided we have sufficient variation of cutoff and dose

changes, we can also define an average treatment effect that goes beyond the finite number

of cutoff-doses. For example, we may be interested in the average impact of increasing

everyone’s treatment dose by 10%. The average effects β(x, d, d′) should be weighted by the

joint density of (X,D,D′) = (X,D, 1.1D).

We define the set C to be a compact subset of X ×D ×D that contains the finite set of

cutoffs and dose changes we observe in the data. The set C is specified by the researcher to

be set that envelops the variation of cutoffs and dose values of in the data. In other words, if

there were an infinite amount of data (cutoffs), the chosen set C is believed to be dense in the

infinite set of cutoffs and dose values. For example, we can choose C to be the convex-hull

of the finite set {cp,j, dp,j−1, dp,j}.

The researcher specifies an integrable weighting function ω : C → R which defines an

ATE parameter µATE computed over the set C.
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µATE =

∫
C
ω(x, d, d′)β(x, d, d′) d(x, d, d′)

The ATE parameter µATE is identified as long as we have an infinite amount of data for

infinitely many cutoff-dose values that cover the set C.

Lemma 2. Assume

• ω(x, d, d′), β(x, d, d′) are continuous in the compact set C ⊂ R3

• the population version of the model (infinite amount of data) is as following: there is

an infinite countable set of cutoff-doses C∗ that is dense in C such that β(c, d, d′) is

identified for every (c, d, d′) ∈ C∗

Then, µATE is identified.

The first step of the estimation procedure for µATE is identical to the first step of the

estimation of µALTE. The difference is the estimation of the infinite dimensional object

β(x, d, d′) in the second step. In the first step, LPRs produce estimates for each Bp,j using

observations in the neighborhood of each cutoff p, j in the data (equations 4, 5 and 6). In

the second step, we use multivariate local polynomial regression of B̂p,j on {cp,j, dp,j−1, dp,j}

to construct an estimate β̂(x, d, d′) for the function β(x, d, d′). The estimator µ̂ATE is the

weighted integral of β̂(x, d, d′). The researcher chooses a bandwidth hI > 0, the maximum

degree of the polynomials ρI ≥ 3, and a kernel density function k(u). For each point

(x, d, d′) ∈ C, the estimate β̂(x, d, d′) is obtained by the following least squares minimization:

β̂(x, d, d′) = η̂1 (10)

η̂ = argmin
η

(
B̂ − E(x, d, d′)η

)′
ΩhI (x, d, d

′)
(
B̂ − E(x, d, d′)η

)
(11)
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where E(x, d, d′) is the K×J matrix formed by stacking the K J × 1 vectors Ep,j(x, d, d
′); η

is a J×1 vector of parameters; each Ep,j(x, d, d
′) is a vector of the standard basis of the space

of polynomials in R3 of maximum degree ρI evaluated at ((x− cp,j), (d− dp,j−1), (d′ − dp,j));

each entry in Ep,j(x, d, d
′) is a polynomial of the form p(x, d, d′) = (x−cp,j)γ1(d−dp,j−1)γ2(d′−

dp,j)
γ3 with γ1, γ2, γ2 ∈ {0, 1, . . . , ρI} γ1 + γ2 + γ2 ≤ ρI ; the first entry in Ep,j(x, d, d

′) is the

polynomial of degree zero (i.e. p(x, d, d′) = 1), the next 3 entries are all the polynomials

of degree 1 (i.e. all p(x, d, d′) such that γ1 + γ2 + γ2 = 1), and then all the polynomials of

degree 2, and so on, until degree ρI ; therefore, J =
(
ρI+3

3

)
, and η1 is the first coordinate

of the vector η (intercept coefficient); ΩhI (x, d, d
′) is the K × K diagonal matrix of kernel

weights:

ΩhI (x, d, d
′) = diag {ΩhI ,p,j}p,j = diag

{
k

(
x− cp,j
hI

)
k

(
d− dp,j−1

hI

)
k

(
d′ − dp,j
hI

)}
p,j

The estimator µ̂ATE is the weighted integral of β̂(x, d, d′) over set C with weighting density

ω(x, d, d′) chosen by the researcher. The integral µ̂ATE can be written as a finite weighted

sum of the first stage estimates B̂p,j.

µ̂ATE =

∫
C
ω(x, d, d′)β̂(x, d, d′) d(x, d, d′) =

∑
p∈P,j∈Jp

∆p,jB̂p,j

where ∆p,j are called ‘corrected weights’. They are implicitly defined by the second step

local polynomial regression and given by the formula
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∆p′,j′ =

∫
C

ω(x, d, d′) e′1 (E(x, d, d′)′ΩhI (x, d, d
′)E(x, d, d′))

−1

ΩhI ,p′,j′(x, d, d
′)Ep′,j′(x, d, d

′) d(x, d, d′)

=

∫
C

ω(x, d, d′)
det
(
E(x, d, d′)′ΩhI (x, d, d

′)E0←ep′,j′ (x, d, d
′)
)

det (E(x, d, d′)′ΩhI (x, d, d
′)E(x, d, d′))

d(x, d, d′) (12)

where e1 is the J × 1 vector e1 = [1 0 0 · · · 0]′, and E0←ep′,j′ (x, d, d
′) is the matrix valued

function E(x, d, d′) except for the first column which is replaced by the K × 1 vector ep′,j′

that is zero everywhere except for the (p′, j′)-th entry which is equal to 1.

A necessary condition for consistency of µ̂ATE is that the schedule of cutoff-dose values

becomes dense in the set C as K →∞. Our asymptotic exercise has the sample size n→∞,

the total number of cutoffs K → ∞, but the number of sub-populations P is fixed.8 The

integral of a function can be approximated by the weighted sum of the values of such function

at a finite number of points in its domain. The approximation error converges to zero as

the number of points grows large. In our case, the function evaluations are estimated which

means that the integral approximation error has to converge to zero fast enough to ensure

asymptotic normality.

Assumption 5 states conditions on the limiting behavior of the schedule of cutoffs and

treatment doses and on how it approximates set C.

Assumption 5.

(a) The schedule of cutoffs and doses comes from a triangular array of fixed constants that

8Another less tractable asymptotic exercise could have n → ∞, P → ∞ but a fixed number of cutoffs
K(p) in each sub-population. This alternative asymptotics has the probability of some sub-populations
converge to zero. Conditional mean estimators have these probabilities in the denominator which complicates
their asymptotics, and we chose not to pursue this route. Moreover, our pooling assumption 1 makes an
additional treatment effect in an existing sub-population indistinguishable than the same treatment effect in
an additional sub-population.
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depends on K (total number of cutoffs) denoted CK:

CK = {(cp,j,K , dp,j−1,K , dp,j,K)}p∈P,j∈Jp,K

where CK ⊂ C and Jp,K = {1, . . . , KK(p)} with total number of cutoffs in subpopulation

p indexed by K;

(b) The maximum distance between two consecutive cutoffs within a subpopulation p ∈ P

is inversely proportional to the total number of cutoffs K(p) in that subpopulation

max
j=1,...,KK(p)

|cp,j,K − cp,j−1,K | = O
(
KK(p)−1

)

(c) given the second step estimation bandwidth sequence hI,K (which is such that 1/
(
Kh3

I,K

)
=

O(1)) the number of points in CK that are within the hI,K neighborhood of any point

in C is of order Kh3
I,K:

sup
(x,d,d′)∈C

K∑
j=1

I
{

ΩhI,K ,j(x, d, d
′) > 0

}
= O

(
Kh3

I,K

)

where ΩhI,K ,j(x, d, d
′) is defined after equation 11;

(d) for every ρI ∈ Z+ (degree of 2nd step local polynomial)

sup
(x,d,d′)∈C
1≤j≤K

∣∣∣∣∣det
(
E(x, d, d′)′ΩhI,K (x, d, d′)E0←ej(x, d, d

′)
)

det
(
E(x, d, d′)′ΩhI,K (x, d, d′)E(x, d, d′)

) ∣∣∣∣∣ = O
(
(Kh3

I,K)−1
)

where E(x, d, d′) and ΩhI,K (x, d, d′) were defined after equation 11; E0←ej(x, d, d
′) is

equal to E(x, d, d′) except for the first column which has the K × 1 vector ej which is

zero everywhere except for j-th coordinate that is equal to 1.

Conditions in assumption 5 basically require two things: for large K, (i) the proportion of

observations in the hI neighborhood of any point in set C is of the same order of the volume
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of this neighborhood, that is, h3
I ; (ii) there is always enough points in the hI neighborhood

of any point in set C for the invertibility of the
(
E(x, d, d′)′ΩhI,K (x, d, d′)E(x, d, d′)

)
matrix.

These conditions should be satisfied in a variety of examples of triangular arrays of points,

and we give one simple example in the Appendix (section 7.9.3) where these conditions hold.

Next, we state sufficient smoothness conditions on the functions ω(x, d, d′) and β(x, d, d′).

Assumption 6. (a) ω(x, d, d′) is a continuous function in (x, d, d′);

(b) for γ = (γ1, γ2, γ3) ∈ Z3
+, let

∇|γ|β(x, d, d′) =
∂γ1+γ2+γ3

∂xγ1∂dγ2∂d′γ3
β(x, d, d′)

denote the partial derivatives of β(x, d, d′). Assume ∇|γ|β(x, d, d′) is continuous for

every γ such that |γ| ≤ ρI + 1, where ρI is the polynomial degree in the second step

estimation.

(c) R(x, d, p) ≡ E[Yi(d)|Xi = x, Pi = p] is ρ+ 2 times continuous differentiable wrt x with

ρ + 2-th partial derivative ∇ρ+2
x R(x, d, p) where ρ is the order of the LPR in the first

step estimation

(d) ∇ρ+2
x R(x, d, p) and ∇xσ

2(x, d, p) are bounded functions of (x, d, p)

(e) Yi(d)−R(x, d, p) is a bounded random function of (x, d, p) a.s.

(f) For the schedule of cutoffs and doses CK and corrected weights ∆p,j,K (defined in equa-

tion 12) the limits below are well defined.
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lim
K→∞

{∑
p,j

∆p,j,K

[
∇ρ+1
x R(cp,j,K , dp,j,K , p)− (−1)ρ+1∇ρ+1

x R(cp,j,K , dp,j−1,K , p)
] }

lim
K→∞

{
K
∑
p,j

∆2
p,j,K

σ2(cp,j,K , dp,j,K , p) + σ2(cp,j,K , dp,j−1,K , p)

fX|P (cp,j,K , p)qp

}

Theorem 2 states the rate conditions under which our estimator µ̂ATE has an asymptotic

normal distribution.

Theorem 2. Assume conditions in 1, 2, 3, 4, 5, 6 hold.

As n→∞, assume that K →∞, h→ 0, and hI → 0 such that

•
√
Knhhρ+1 → C ∈ [0,∞) where ρ is the order of the first step LPR

•
√
K logn√
nh
→ 0 and Kh = O(1)

•
√
KnhhρI+1

I → 0 and 1/Kh3
I = O(1) where ρI is the order of the second step multi-

variate LPR.

then

√
Nh (µ̂ATE − µATE)

d→ N (C · AB;AV )

where
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AB = lim
K,n→∞

{∑
p,j

∆p,jBp,j
}

AV = lim
K,n→∞

{
K
∑
p,j

∆2
p,jVp,j

}

and Bp,j and Vp,j are given in equations (8) and (9)

We give a simple example to illustrate the rate conditions. Suppose h = n−λ1 , K = nλ2 ,

ρ = 1 (local linear regression in the 1st step), ρI = 3 (local cubic regression in the 2nd step),

and hI = MK−1/3 for some constant M . First, note that hI → 0 and Kh3
I = O(1). The

rate conditions on K and h are illustrated in figure 1 in terms of (λ1, λ2). In this setting,

the first set of rate conditions gives λ1 ≥ (λ2 + 1)/(2ρ + 3) = (λ2 + 1)/5: the bandwidth of

the first step estimation has to converge to zero fast enough to control the asymptotic bias

(dotted lines); the second set of rate conditions gives λ1 < 1 − λ2 and λ2 ≤ λ1: the total

number of cutoffs K cannot grow too fast relatively to the sample size n so to have enough

observations around each of the cutoffs to insure the uniformity results (dashed lines). The

third rate condition is equivalent to 1 + λ2

(
1− 2

3
(ρI + 1)

)
< λ1 or 1 − λ2

(
5
3

)
< λ1: K has

to grow fast enough relatively to n to insure the integral approximation error vanishes faster

than the rate of convergence of the estimator µ̂ATE (solid line). The shaded area in figure 1

below illustrates the set of choices for the bandwidth power λ1 for a given λ2 ∈ (0, .5). In

this example with ρI = 3 we do not have asymptotic bias since the shaded area does not

touch the bias dotted line. We can use a higher second step polynomial degree of at least

ρI = 6 (expands the shaded area to the left) allowing combinations of λ1 and λ2 that lead

to asymptotic bias. The maximum convergence rate of the estimator
√
Knh is equal to

√
n

along the red line.
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Figure 1: Rate Conditions of Theorem 2

Notes: Rate conditions of Theorem 2 for an example of sequences h = n−λ1 , K = nλ2 , and hI = K−1/3.
The first step estimation uses ρ = 1 (local linear regression), and the second step estimation uses ρI =
3 (local cubic regression). The rate conditions are depicted as following:

√
Knhhρ → C (dotted line);√

K log n/
√
nh→ 0 and Kh = O(1) (dashed lines); and

√
KnhhI

ρI → 0 (solid line).

Another point worth mentioning is that the finite sample bias and standard error ex-

pressions are the same for both finite or infinite K asymptotics as long as we use corrected

weights. If we define µALTE using corrected weights,

µALTE =
∑

p,j ∆p,jβp,j

then the confidence interval for µALTE (asymptotics with finite K) has the same formula as

the confidence interval for µATE (asymptotics with infinite K):

CI(µALTE; 1− α) = CI(µATE; 1− α)

=

µ̂ATE − hρ+1
∑
p,j

∆p,jBp,j ± zα/2
√∑

p,j

∆2
p,jVp,j


where zα/2 is the 1 − α/2 percentile of the standard normal distribution. This confidence
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interval has asymptotic coverage of 1− α under both types of asymptotics (finite or infinite

K).

The asymptotic bias and variance terms of theorem 2 can be consistently estimated using

the procedures discussed at the end of section 2. One has to compute B̂p,j and V̂p,j and the

weighted sum using the corrected weights ∆p,j. Sufficient moment and rate conditions give

consistency of these estimators under the asymptotics with large number of cutoffs.

4 Parametric Heterogeneity

In the third case of heterogeneity assumptions, the researcher specifies a parametric func-

tional form for the treatment effect function β(·). Economic theory or a priori knowledge

guides the choice of a functional form that credibly summarizes the heterogeneity of treat-

ment effects. For example, Lazear (2001) presents a well known formalization of a theory of

educational output as a function of class size, teacher quality and student characteristics. In

this section we discuss both the sharp and fuzzy RDD cases in separate subsections. For each

case, we give sufficient conditions for identification and asymptotically normal estimation of

the functional form parameters. The ATE is simply a linear combination of these parameters.

Different than section 3, identification does not require a large number of cutoffs because of

the parametric functional form assumption. The default asymptotic exercise has the sample

size growing to infinity but the number of cutoffs fixed. In the sharp case, we show that our

asymptotic normality result holds even when the number of cutoffs goes to infinity. This is

not pursued in the fuzzy case, because the definition of the different compliance behaviors

depends on the number of cutoffs being finite.

4.1 Sharp RDD

Thus far we have been able to make inferences on the ATE over general distributions

of individuals when the treatment effect function β(.) is an unknown ‘infinite’ dimensional
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object. In this section, economic theory or a priori knowledge of the researcher can be used

to restrict such a function to be an unknown ‘finite’ dimensional object. Besides the ATE,

researchers are also interested in learning the form of β(.) and how treatment effects vary

with changes in (x, d, d′). In our high school assignment example, we may be interested in

learning whether the average return to school quality varies with the test score which is a

measure of ability. If β(x, d, d′) = θ1(d′ − d) + θ2(d′ − d)x + θ3(d′ − d)x2 for unknown θ,

we can test the hypothesis that θ3 = 0. Therefore, a second type of summary measure for

heterogeneous treatment effects is the vector of parameters θ of this functional form. The

parametric functional form assumption is formally stated below.

Assumption 7. For a finite vector of real valued functions W (x, d, d′) = [W1(x, d, d′),

. . . ,Wq(x, d, d
′)]′ known to the researcher, there exists an unique θ0 ∈ Rq such that

β(x, d, d′) ≡ W (x, d, d′)′θ ⇐⇒ θ = θ0

Moreover, for every x, d1, d2, d3, W (x, d1, d3) = W (x, d1, d2)+W (x, d2, d3).9 For a weigh-

ing density ω(x, d, d′) chosen by the researcher, ω(x, d, d′)W (x, d, d′) is a Riemann integrable

function over the set C.

It is worth mentioning that assumption 7 is weaker than the common practice in applied

work to specify a parametric functional form on the conditional mean function of the outcome

Y . A parametric assumption on β(c, d, d′) is equivalent to a semi-parametric assumption on

the conditional mean of E[Yi(d)|Xi = c, Pi = p]. To see this, fix a baseline treatment dose

d0 ∈ D. For any (c, d, p) ∈ X ×D × P ,

9This summability condition is assumed here for consistency with the linearity of the expectation operator.
In other words, the treatment effect function β(·) is defined in equation (2) using the expectation operator
on the distribution of the change in potential outcomes. Therefore, β(x, d1, d3) = β(x, d1, d2) + β(x, d2, d3),
and the parametric functional form needs to be consistent with this. We work with parametric functional
forms that are linear in θ to make identification in fuzzy case more tractable. Results in the sharp case also
apply to functional forms that are non-linear but differentiable in θ.
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E[Yi(d)|Xi = c, Pi = p] = β(c, d0, d) + E[Yi(d0)|Xi = c, Pi = p]

Under assumption 7, if you know θ0, you know the entire function β(c, d, d′), but you

still need knowledge of E[Yi(d0)|Xi = c, Pi = p] as a function of (c, p) in order to retrieve

the entire function E[Yi(d)|Xi = c, Pi = p] for all (c, d, p). In other words, our functional

form restriction is robust to misspecification of E[Yi(d0)|Xi = c, Pi = p]. Robustness to

misspecification in the conditional mean of Y is an useful property because empirical evidence

suggests the conditional mean of Y to be a much more complex function than the treatment

effect function β(·). In this case, misspecifying the conditional mean of Y leads to a larger

bias than misspecifying the treatment effect function β(x, d, d′).

The ATE in the third case of heterogeneity assumptions is simply the integral of the func-

tional form of assumption 7 with a weighting density ω(x, d, d′) chosen by the researcher.10

µATE =

∫
C
ω(x, d, d′)β(x, d, d′) d(x, d, d′)

=

(∫
C
ω(x, d, d′)W (x, d, d′) d(x, d, d′)

)
θ0 ≡ Zθ0 (13)

where Z is a known 1 × q vector that can be computed once the researcher specifies C,

W (x, d, d′) and ω(x, d, d′).

Lemma 3 shows that θ0 is identified as long as there is sufficient variation in cutoff

characteristics relative to the basis functions W (x, d, d′). The ATE µATE is also identified

because it is a known linear function of θ0.

Lemma 3. Assume β(cp,j, dp,j−1, dp,j, p) is identified for every p ∈ P and j ∈ Jp, and

assumptions 1 and 7 hold. Let Wp,j = W (cp,j, dp,j−1, dp,j), where W (·) is the vector basis

10The integral is computed over set C by default, but it could be any other subset of R3 in which the
researcher believes the function form credibly explains the heterogeneity of treatment effects.
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function of assumption 7. If
∑
p,j

Wp,jW
′
p,j is invertible, then θ0 is identified and

θ0 =

(∑
p,j

Wp,jW
′
p,j

)−1∑
p,j

Wp,jBp,j

where Bp,j is defined in equation 3

The estimation of θ0 is laid out in two steps. The first step is exactly the same as in

the previous sections. We use observations near each of the cutoffs in each sub-population

to estimate Bp,j non-parametrically by LPR (equations 4, 5 and 6). In the second stage,

we regress B̂p,j on the basis functions evaluated at each cutoff-dose explanatory variables

Wp,j = W (cp,j, dp,j−1, dp,j) for W (·) of assumption 7 to obtain θ̂. Since the treatment effect

function is parametric, we can weight first stage estimates differently to minimize the mean

squared error (MSE) of θ̂. More specifically, we stack all B̂p,j into a K×1 vector B̂, and stack

all Wp,j into a K × q matrix W . Using a K ×K symmetric and positive definite weighting

matrix Ω chosen by the researcher, θ̂ is the solution to the following weighted least squares

problem:

θ̂ = argmin
θ

(
B̂ −Wθ

)′
Ω
(
B̂ −Wθ

)

As in equation 13, the estimator for µATE is a linear combination of θ̂.

µ̂ATE = Zθ̂

For a fixed number of cutoffs, as the sample size n increases and the bandwidth h con-

verges to zero, each individual observation is used only once in the whole estimation after

a large n. The estimated treatment effects are independent of each other across different

cutoffs. The asymptotic distribution of each element of θ̂ is a linear combination of the
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asymptotic normal distribution of each B̂p,j (Lemma 7 in the Appendix)

Theorem 3. Suppose assumptions 1, 2, 3, 4, 7 hold. As n → ∞ and h → 0, assume

nh→∞ and
√
nhhρ+1 → C ∈ [0,∞). Then,

√
nh
(
θ̂ − θ0

)
d→ N

(
C(W ′ΩW )−1W ′ΩB; (W ′ΩW )−1W ′ΩVΩW (W ′ΩW )−1

)
√
nh (µ̂ATE − µATE)

d→ N
(
ZC(W ′ΩW )−1W ′ΩB; Z(W ′ΩW )−1W ′ΩVΩW (W ′ΩW )−1Z ′

)
Moreover, the asymptotic MSE of either

√
nh
(
θ̂ − θ0

)
or
√
nh (µ̂ATE − µATE) is mini-

mized when Ω = (C2BB′ + V)−1. Below, the definitions used:

B =
[
B1,K(1), . . . ,BK(1),K(1),B1,K(2), . . . ,BK(P ),K(P )

]′
the formula for Bp,j is given in equation 8

V = diag
{
V1,K(1), . . . ,VK(1),K(1),V1,K(2), . . . ,VK(P ),K(P )

}′
the formula for Vp,j is given in equation 9

Z =
(∫
C ω(x, d, d′)W (x, d, d′) d(x, d, d′)

)
W =

[
W ′

1,K(1), . . . ,W
′
K(1),K(1),W

′
1,K(2), . . . ,W

′
K(P ),K(P )

]′
Wp,j = W (cp,j, dp,j−1, dp,j)

The estimator for the asymptotic variance and bias are straightforward. We know W ,

Z, and we need to obtain Ĉ, B̂, and V̂ . We obtain estimates for Bp,j and Vp,j according to

the procedure discussed in the end of section 2. Once we have B̂ and V̂ , we can compute the

optimal weighting matrix Ω̂ = (Ĉ2B̂B̂′ + V̂)−1, where Ĉ =
√
nhhρ+1.

The default asymptotic exercise for this section has the sample size growing large but

the number of cutoffs fixed. In the third case of heterogeneity assumptions, the treatment

function is an unknown object of only finite dimension, and we do not need the number of
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cutoffs to grow to infinity to approximate the integral average treatment effect. Nevertheless,

under conditions similar to theorem 2, we also obtain asymptotic normality of θ̂ under the

asymptotics with a large number of cutoffs.

Corollary 1. Assume conditions in 1, 2, 3, 4, 5(a,b), 6(a,c,d,e) hold. Assume 7 holds and

its vector valued function W (x, d, d′) is bounded. Assume 6(f) holds for the q × 1 vector

valued weights

wp,j = (W ′ΩW )
−1
W ′Ω•,(p,j)

in the place of ∆p,j, where Ω•,(p,j) is the column of Ω associated with cutoff (p, j), and that

maxp,j
∥∥(W ′ΩW )−1W ′Ω•,(p,j)

∥∥ = O(K−1). As n → ∞, assume K → ∞, and h → 0 such

that

•
√
K logn√
nh
→ 0 and Kh = O(1)

•
√
Knhhρ+1 → C ∈ [0,∞) where ρ is the order of the LPRs

then

√
Knh

(
θ̂ − θ0

)
d→ N (C · ABθ;AVθ)

√
Knh (µ̂ATE − µATE)

d→ N (Z C ABθ;Z AVθ Z
′)

where

ABθ = lim
K,n→∞

∑
p,j

wp,jBp,j

AVθ = lim
K,n→∞

K
∑
p,j

wp,jw
′
p,jVp,j

where Bp,j and Vp,j are given in equations 8 and 9.
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Both estimators θ̂ and µ̂ATE have a faster convergence rate under the largeK asymptotics.

Differently than theorem 2, there is no lower bound requirement on the speed that K grows

relatively to n which includes the fixed K case. Comparing the finite sample expressions

for bias and variance that one obtains from theorem 3 or theorem 1, we notice that they

do not change whether K grows large or not. Consistent estimators for the asymptotic bias

and variance terms are constructed using the estimators B̂p,j and V̂p,j proposed in the end of

section 2. Sufficient moment and rate conditions give consistency of these estimators under

the asymptotics with large number of cutoffs.

4.2 Fuzzy RDD

Another key advantage of the third case of heterogeneity assumptions is that a parametric

functional form obtains identification in the fuzzy RDD case with multiple cutoffs. In the

fuzzy RDD case, a “sharp RDD like” treatment eligibility schedule D(x, p) (defined in eq. 1)

applies to most individuals, but the rest of individuals deviates from such treatment schedule

for unobserved reasons. In the high school assignment example, students may choose to go to

a school that is not the best school they get in. For instance, a student may want to attend

the same high school as does a certain friend or sibling.11 Another example is Garibaldi,

Giavazzi, Ichino, and Rettore (2012), where the schedule of tuition subsidies applies to most

students in Bocconi University, but the university reserves the right to grant certain students

different subsidies after reassessing their ability to pay.

The fuzzy RDD case is modeled in terms of the potential treatment assignment frame-

work. Let (Ω,A,P) denote a probability space for the population of interest. For each

individual ω ∈ Ω, we define the potential treatment assignments for each treatment eli-

11The RDD assignment may be fuzzy for application-specific reasons. One example is the case where
the assignment of individuals into different treatments is made through a matching mechanism, and the
econometrician does not observe all the individual characteristics used in the matching algorithm. This is
the reason why the RDD in PEU is fuzzy: based on the entire distribution of test scores and preferences, the
central planner ranks students by their test scores and assigns each one of them to her most preferred school
among those schools with vacancies. We keep the simple example of the high school assignment problem in
the main text of ease of exposition.
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gibility in sub-population p ∈ P by the measurable function Ip : Ω × J 0
p → J 0

p , where

Jp = {1, . . . , K(p)} and J 0
p = Jp ∪ {0}. That is, Ip(ω, j) denotes the treatment individual

ω receives given she is eligible to receive treatment j ∈ J 0
p and is in sub-population p ∈ P .

We do not observe the potential treatment assignments but just the actual treatment dose

received Di : Ω→ D.

Di(ω) =
∑

p∈P,j∈Jp
l∈J 0

p

I {cp,j ≤ Xi(ω) < cj+1,p} I {Pi(ω) = p} I {Ip(ω, j) = l} dp,l

Treatment doses dp,j are assumed to be increasing in j ∈ J 0
p for every p ∈ P , but this

restriction can be relaxed (see formal definition of compliance groups below and footnote).

We build on classical definitions of compliance behaviors (e.g. Imbens and Rubin (1997))

and define three types of compliance groups in a sub-population p with multiple treatments.

We use a simple example with 3 schools and one sub-population to introduce the different

compliance behaviors. That is, P = 1, K = 2, J 0
1 = {0, 1, 2}, and we assume d1,0 < d1,1 <

d1,2. Table 1 lists all possible treatment eligibility and assignment combinations.
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Table 1: Different Compliance Behaviors

I1(0) I1(1) I1(2) Type
0 0 0
1 1 1 never-changers
2 2 2
0 0 2
0 1 1 compliers
0 1 2
1 1 2
0 0 1
0 1 0
0 2 0
0 2 1 defiers
0 2 2
1 0 0
1 0 1

I1(0) I1(1) I1(2) Type
1 0 2
1 1 0
1 2 0
1 2 1
1 2 2
2 0 0
2 0 1 defiers
2 0 2
2 1 0
2 1 1
2 1 2
2 2 0
2 2 1

Notes: All possible realizations of the random function I1(j) which denotes the treatment dose received
given eligibility for treatment dose j ∈ J 0

1 .

The three different behaviors are defined in terms of changes in treatment eligibility.

‘Never-changers’ are those whose treatment received never changes when eligibility changes.

The treatment received by ‘compliers’ or ‘defiers’ changes at least once when eligibility

changes. ‘Compliers’ are those whose treatment received changes if and only if it changes

to the better treatment dose they become eligible for. ‘Defiers’ change to a treatment dose

different from one they are eligible for. In the case of two schools, our definition is equivalent

to the classical definition of compliers and defiers.

In the high school assignment case, an example of a ‘never-changer’ is a student who

strongly prefers the high school with the lowest admission cutoff and will attend that high

school even if she is admitted to better schools. An example of a ‘complier’ is a student who

attends the best school into which she is admitted or a student who chooses the best school

among those nearby schools. If a student has rational preferences, is never indifferent, and

can always pick a high school among those schools with admission cutoffs that are less or
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equal than her test score, then she is never a ‘defier’: as her test score increases, a new school

is added to her choice-set of schools; she either chooses to go to the new school to which

she becomes eligible for, or she stays at the school which she preferred the most prior to the

increase in her choice-set.

These three groups are measurable sets that form a different partition of Ω for each p ∈ P .

They are formally defined below.12

Gnc,p = {ω ∈ Ω : ∀j ∈ Jp, Ip(ω, j) = Ip(ω, j − 1)}

Gc,p = {ω ∈ Ω : ∀j ∈ Jp st Ip(ω, j − 1) 6= Ip(ω, j) we have Ip(ω, j − 1) < Ip(ω, j) = j}

Gd,p = {ω ∈ Ω : ∃j ∈ Jp st Ip(ω, j − 1) > Ip(ω, j) or Ip(ω, j − 1) < Ip(ω, j) 6= j}

Our definition of the compliance groups is suited to a finite number of cutoffs, and a

population with an infinite number of cutoffs would require a more complex definition of

compliance. It is plausible to assume that the treatment received never changes unless it

changes to comply with the change in treatment eligibility. This minimal assumption rules

out defiers in the population. For never-changers, we can never identify treatment effects

because they never undergo a change in treatment dose. Because of the multiplicity of

treatments, compliers can differ from each other when it comes to the number of treatments

they comply with. For example, the student who is willing to attend the best school possible

complies with all changes in treatment eligibility. On the other hand, the student who is

willing to attend the best school possible within a certain distance from home only complies

with some of the changes in treatment eligibility. We do not observe potential treatment

assignments but only the treatments individuals actually receive. Therefore, we cannot

12The definitions of the three groups is based on the treatment doses being increasing in j for each sub-
population, dp,0 < dp,1 < . . . < dp,K(p). The definitions can be changed to accommodate decreasing or
non-monotonic treatment doses. For example, if a school with a higher admission cutoff happens to have
a lower quality, or in the class-size rule applications when the class size drops after each cutoff. Compliers
could then be defined as those who comply at least once to some eligibility change no matter what dose they
receive prior to the change.
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distinguish one type of complier from another. For a sub-population p ∈ P , treatment doses

d, d′ ∈ D, we define the treatment effect on compliers to be given by the same function of

(x, d, d′, p) across different types of compliers.

βc(x, d, d
′, p) = E[Yi(d

′)− Yi(d)|Xi = x, Pi = p,G] ∀G ∈ A : G ⊆ Gc,p

Assumption 8 is a generalized version of the sufficient conditions for identification of the

treatment effect on compliers in the case with one cutoff (Hahn, Todd, and Van der Klaauw

(2001)).

Assumption 8.

(i) There are no defiers: P[Gd,p] = 0 for ∀p ∈ P

(ii) For any p ∈ P, d ∈ D, and ∀G ∈ A : G ⊆ Gc,p, E[Yi(d)|Xi = x, Pi = p,G] is a

continuous function of x

(iii) There exists ē > 0 small such that for any p ∈ P, j ∈ Jp, l ∈ J 0
p ,

(Ip(j), Ip(j − 1), Yi(dp,l)) ⊥ Xi | Xi ∈ [cp,j ± e], Pi = p

where Ip(·) is the random variable defined by the function Ip(ω, ·).

In the case of table 1, after we rule out defiers, we are left with two cutoffs and 3

possible treatment effects on compliers: βc(c1,1, d1,0, d1,1, 1) in cutoff c1,1; βc(c1,2, d1,0, d1,2, 1)

and βc(c1,2, d1,1, d1,2, 1). Comparing the average of individuals around cutoff c1,1 identifies

treatment effect βc(c1,1, d1,0, d1,1, 1). Identification is not possible in cutoff c1,2 because there

are two treatment effects to be retrieved from the observed change in average outcome around

such cutoff. It becomes necessary to impose some assumption on how the identified treatment

effect in cutoff c1,1 relates to the unidentified effects in cutoff c2,1. We use the parametric

functional form specified by the researcher in the third case of heterogeneity assumptions to

obtain identification in the fuzzy case.
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Similarly to the sharp case, assumption 1 applied to βc allows one to pool observations

from many sub-populations. Lemma 4 shows that the observed change in average outcome

at a given cutoff is a weighted average of treatment effects on compliers who switch from

various doses into the dose associated with that cutoff. If the treatment effect function is

linear in a vector of parameters, then the observed jump in outcomes is also linear in those

parameters for which we can solve.

Lemma 4. Under assumption 8,

Bp,j =
∑
l∈J 0

p

l<j

ωp,j,lβc(cp,j, dp,l, dp,j, p)

where

ωp,j,l = lim
e↓0
{P[Di = dp,l|Xi = cp,j − e, Pi = p]− P[Di = dp,l|Xi = cp,j + e, Pi = p]} (14)

and Bp,j is defined in equation 3

Moreover, suppose assumptions 1 and 7 hold for βc. Define W̃p,j =
∑

l∈J 0
p ,l<j

ωp,j,lWp,j,l

with Wp,j,l = W (cp,j, dp,l, dp,j) for the vector basis function W (·) of assumption 7. If
∑

p,j W̃p,jW̃
′
p,j

is invertible, then θc0 is identified and

θc0 =

(∑
p,j

W̃p,jW̃
′
p,j

)−1∑
p,j

W̃p,jBp,j

The ATE is simply the integral of the functional form βc over the relevant set C where

the researcher chooses the weighting density ω(x, d, d′).

39



µcATE =

∫
C
ω(x, d, d′)βc(x, d, d

′) d(x, d, d′)

=

(∫
C
ω(x, d, d′)W (x, d, d′) d(x, d, d′)

)
θc0 ≡ Zθc0 (15)

Lemma 4 suggests a two-step estimation procedure for θc0 where first-step estimates of Bp,j

are regressed on estimates of W̃p,j. The first-step is computationally similar to the previous

sections. For a sub-population p, cutoff j, we estimate the jump Bp,j in the conditional

mean of Y using observations around cutoff (p, j) (equations 4, 5, and 6). The novelty of

the first-step is the estimation of the jump in the probability of receiving a given treatment

dose in a given cutoff. For any p ∈ P , j ∈ Jp, l ∈ J 0
p , l < j, we use LPRs to estimate ωp,j,l

defined in equation 14.

Similarly to the procedures described in equations 4 - 6, we estimate ωp,j,l by regressing

I{Di = dp,l} on polynomials of X on each side of the cutoff cp,j. We choose a bandwidth

hω > 0 and the order of the polynomial ρω.

ω̂p,j,l = â−p,j − â+
p,j (16)

(â+p,j ,b̂
+
p,j)=argmin

(a,b)

n∑
i=1

k
(
Xi−cp,j
hω

)
vp,j+i [I{Di=dp,l}−a−b1(Xi−cp,j)−...−bρω (Xi−cp,j)ρω ]

2 (17)

(â−p,j ,b̂
−
p,j)=argmin

(a,b)

n∑
i=1

k
(
Xi−cp,j
hω

)
vp,j−i [I{Di=dp,l}−a−b1(Xi−cp,j)−...−bρω (Xi−cp,j)ρω ]

2 (18)

where vp,j+i = I{cp,j ≤ Xi < cp,j + hω, Pi = p}, vp,j−i = I{cp,j − hω < Xi < cp,j, Pi = p}. We

compute ω̂p,j,l for every p ∈ P , j ∈ Jp, l ∈ J 0
p , l < j.

Using these estimated probabilities ω̂p,j,l, we compute an estimate
̂̃
W p,j for the weighted
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average W̃p,j of basis functions evaluated at the explanatory variables of each change in dose.

̂̃
W p,j =

K(p)∑
l∈J 0

p ,l<j

ω̂p,j,lW (cp,j, dp,l, dp,j) =
∑

l∈J 0
p ,l<j

ω̂p,j,lWp,j,l (19)

for the q × 1 vector of basis functions W (·) of assumption 7.

The regression of B̂p,j on
̂̃
W p,j gives an estimate for θ0. More specifically, we stack all

1 × q vectors
̂̃
W
>

p,j into the K × q matrix
̂̃
W , and B̂p,j into the K × 1 vector B̂. Given a

K×K symmetric and positive definite weighting matrix Ω, our estimator for θc0 is a solution

to the following weighted least squares problem:

θ̂c = argmin
θ

(
B̂ − ̂̃Wθ

)′
Ω

(
B̂ − ̂̃Wθ

)
(20)

Following equation 15, the estimator for µcATE is a linear combination of θ̂c.

µ̂cATE = Zθ̂c

where Z=(
∫
C ω(x,d,d′)W (x,d,d′) d(x,d,d′)) is known.

We state sufficient conditions for asymptotic normality of these estimators in the default

asymptotics with large number of observations but fixed number of cutoffs. The asymptotics

with a large number of cutoffs is not pursued because of tractability. Our definitions of

compliance groups relies on the number of cutoffs being finite. Moreover, a large number of

cutoffs increases the number of ω̂ to be estimated in the first stage. Next, we extend the

smoothness assumptions on the conditional mean of Yi (assumption 4) to the conditional

probabilities of potential treatment doses.

Assumption 9. For every p ∈ P, j ∈ Jp, l ∈ J 0
p

• RY (x, j, l, p) = E[Yi(dp,l)|Xi = x, Pi = p, Ip(j) = l] is ρ + 1 times continuously differ-
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entiable w.r.t. x with ρ+ 1-th partial derivative ∇ρ+1
x RY (x, j, l, p)

• RY 2(x, j, l, p) = E[Yi(d)2|Xi = x, Pi = p, Ip(j) = l] is a continuous function of x

• W̃>W̃ =
∑

p,j W̃p,jW̃
′
p,j is invertible

• Define ρ = max{ρ, ρω}, where ρ is the order of the LPR in equations 5 and 6, and ρω

is the order of the LPR in equations 17 and 18.

RD(x, j, l, p) = P[Ip(j) = l|Xi = x, Pi = p] is ρ + 1 times continuously differentiable

w.r.t. x with ρ+ 1-th partial derivative ∇ρ+1
x RD(x, j, l, p).

Theorem 4. Suppose assumptions 1 and 7 hold for the treatment effect on compliers function

βc(c, d, d
′). Suppose assumptions 2, 3, 8, 9 hold.

As n→∞, h→ 0, and hω → 0, assume

• nh→∞, nhω →∞

• h/hω = o(1)

•
√
nhhρ+1 → C ∈ [0,∞),

√
nhωh

ρω+1
ω = O(1)

then

√
nh
(
θ̂c − θc0

)
d→ N

(
C
(
W̃ ′ΩW̃

)−1

W̃ ′ΩB ,
(
W̃ ′ΩW̃

)−1

W̃ ′ΩVΩW̃
(
W̃ ′ΩW̃

)−1
)

√
nh (µ̂cATE − µcATE)

d→ N

(
ZC

(
W̃ ′ΩW̃

)−1

W̃ ′ΩB , Z
(
W̃ ′ΩW̃

)−1

W̃ ′ΩVΩW̃
(
W̃ ′ΩW̃

)−1

Z ′
)

Moreover, the asymptotic MSE of either
√
nh
(
θ̂c − θc0

)
or
√
nh (µ̂cATE − µcATE) is mini-

mized when Ω = (C2BB′ + V)−1. Below, the definitions used:
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B =
[
B1,K(1), . . . ,BK(1),K(1),B1,K(2), . . . ,BK(P ),K(P )

]′
the formula for Bp,j is given in equation 8

V = diag
{
V1,K(1), . . . ,VK(1),K(1),V1,K(2), . . . ,VK(P ),K(P )

}′
the formula for Vp,j is given in equation 9

Estimates for the asymptotic bias and variance as well as the optimal weighting matrix

are obtained in exactly the same way as proposed in section 4.1, theorem 3.

5 Application

In this section, we illustrate our methods using the data from PEU on the high school

assignment in Romania.13 PEU contributes to literature by providing rigorous evidence of

the impacts of going to a better school on the academic performance of students and on the

behavior of parents and teachers. To our knowledge, they were the first ones to apply RDD

to a dataset with variation in cutoff-dose values much larger than most RDD applications.

As rich data become available, applications of RDD with many thresholds will become even

more common reinforcing the already existing demand for our methods. Our purpose in this

section is to show the empirical relevance of three of our main contributions:

(i) the interpretation of the average effect depends on the weighting scheme implied by

the researcher’s policy question because local treatment effects are heterogeneous; we

give one example of policy question where the average effect obtained by normalizing

all cutoffs to zero does not provide the right answer;

(ii) some policy questions target an ATE rather than an ALTE; we give one example of

13The dataset is available online through the website of the American Economic Review where PEU was
published.
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such policy question and show that the estimated ALTE provides a different answer

than the estimated ATE;

(iii) a parametric functional form yields (i) an optimal weighting scheme that increases esti-

mation precision; (ii) identification of treatment effects for the sub-group of ‘compliers’

(fuzzy RDD case); we show that the optimal weighting scheme changes the inference

conclusions, and that the effect on ‘compliers’ is much larger than the Intent-to-Treat

(ITT) effect which is obtained when the sharp RDD estimator is used in a fuzzy RDD

application

The administrative data from Romania covers 3 cohorts of 9 grade students for the years

of 2001, 2002 and 2003. The size of the cohorts are 107812, 110912, and 115413, with a total

of 334137 observations. We only describe the essential elements of the high school assignment

mechanism and refer the reader to PEU for all the details. The assignment to high school is

nationally centralized by the Ministry of Education. At the end of grade 8, students submit

a transition score and a complete ranking of preferences for high schools. The transition

score is an average of the student’s performance in a national eighth grade exam and the

student’s grade point average of grades 5-8. The Ministry of Education ranks students by

their transition score and no other criteria. The mechanism assigns the student in the first

place to her most preferred school, the student in the second place to her most preferred

school, etc. Each school has a fixed number of vacancies, so the mechanism eventually reaches

a student in the rank whose most preferred school is full: it assigns this student to her most

preferred school among those with vacancies. It is assumed that students always prefer the

high schools in their home town to high schools in other towns which is reasonably the case

for 13-14 year old kids living with their parents. Students cannot decline their assignment

and have incentives to truthfully reveal their preference rankings.

Another contribution of PEU is to analyze the data produced by such assignment mech-

anism using RDD methods. We observe the year, the town, the transition score X and the

school each student is assigned to. The summary measure of school quality (treatment dose
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d) is the average-peer performance at each school. The treatment dose d is measured by the

average transition score among those students that are assigned to that school. In translat-

ing this data to a RDD world, the cutoff for admission into a given school is computed by

the minimum transition score among the students that are assigned to that school. For most

students in the sample, we observe their score on the so called “baccalaureate exam” taken

at the end of high school. The score on the baccalaureate exam is our outcome variable Y .

The ranking of preferences for high schools submitted by each student is not observed in

the data which makes our RDD fuzzy. For example, a student could have a score greater

than the cutoff for the school with highest d in her town but still be assigned to a different

school because of her preferences. According to the cutoffs computed, 38% of the students

in the sample are assigned to the high school with the highest d among those schools in

their towns with admission cutoffs less or equal than their transition scores. If students had

exactly the same rank of school preferences in each town, the RDD would be sharp and every

student would attend the school with highest d among those with admission cutoffs less or

equal than her score. Even in the fuzzy RDD case, the sharp treatment effect parameters

of sections 2, 3, and 4.1 have the Intent-to-Treat (ITT) interpretation: they measure the

average academic return of having access to a better school but not necessarily attending it.

The fuzzy treatment effect parameters of section 4.2 measures the academic return of going

to a better school averaged over the group of compliers.

We compute the admission cutoffs and average peer-performance for each high school

in each town-year. For a few town-years, the ordering of schools by admission cutoff does

not correspond to the ordering by treatment dose d, a consequence of the fact that students’

preference rankings over schools don’t always coincide with the ranking of schools by average

peer-performance d. We are interested in the effect of gaining access to a better school, so

we only keep the cutoffs of those schools whose d is higher than the schools with smaller

cutoffs. Also, we merge a few schools that happen to have the same admission cutoff in

some town-years. These procedures lead to a monotonically increasing treatment schedule
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for every town-year p ∈ P cp,j−1 < cp,j and dp,j−1 < dp,j. Once we drop the observations with

missing values for the baccalaureate exam, we are left with a total of 237062 students,

826 schools, 131 towns, and 939 cutoffs. Figure 2(a) illustrates the distribution of

the number of cutoffs across town-years. The asymptotic distributions derived in this paper

assume independence of first-step estimates across cutoffs. Independence across cutoffs is

mimicked in the finite sample by matching each individual observation to one single cutoff.

In other words, each cutoff has a maximum estimation window around it such that windows

do not overlap across cutoffs. For the majority of cutoffs in the sample, there are enough for

observations for feasibility of first-step estimation (Figure 2(b)).

Figure 2: Number of Cutoffs and Observations per Cutoff
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Notes: (a) Histogram of the number of cutoffs per town-year: in each town-year, the admission cutoff of a
given school is the minimum transition score among the students that are assigned to that school. Students’
unobserved preference rankings over schools don’t always coincide with the ranking of schools by average
peer-performance d. This is confirmed by the finding that the ranking of cutoffs does not match the ranking
of the respective treatment doses d associated with the school of each cutoff. We only keep those cutoffs
that grant access to a high school of higher quality.
(b) Histogram of the number of observations per cutoff: these are the observations used in the first-step
estimation of Bp,j for each cutoff (p, j). The neighborhoods around the cutoffs do not overlap and each
individual observation in the sample is matched to only one cutoff.

For ease of exposition, we impose a restriction on the treatment effect function

β(x, d, d′) ≡ β(x, d′ − d︸ ︷︷ ︸
u

) = β(x, u)
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to reduce the dimension of its domain and make possible illustrations of functions of (x, u) in

3D graphs.14 Figure 3(a) illustrates the variation in cutoff and dose-difference values (x, u)

for the Romanian data. The convex hull of {(xp,j, up,j)}p∈P,j∈Jp is our set C over which we

compute average effects.

The common practice normalizes all cutoffs to zero and use the RDD estimator for

one cutoff. Treatment effects are very likely to be heterogeneous, and the normalization

procedure estimates a weighted average of local treatment effects weighted by the relative

density of individuals near each of the cutoffs (Cattaneo, Keele, Titiunik, and Vazquez-

Bare (2014)). Although such implicit weighting scheme is often ignored in applied work,

the interpretation of the ALTE depends crucially on how local treatment effects are com-

bined. Figure 3(b) shows the relative density of individuals around each cutoff, that is,

fX,P (cp′,j′ , p
′)/
∑

p,j fX,P (cp,j, p) for every (p′, j′) in the set C of figure 3(a). This is the im-

plicit weighting scheme of the ALTE obtained by the normalization procedure.

14This assumption restricts the returns of going to a better school to be linear in the average peer-
performance d. The theory developed in this paper is general enough to deal with the three dimensional
domain of β where returns to school quality do not have to be linear in d.
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Figure 3: Cutoff-dose Values and Implicit Weighing of Normalization Procedure
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Notes: (a) Scatter plot of cutoff and dose-difference values {(xp,j , up,j)}p∈P,j∈Jp
for the 939 cutoffs from

the Romanian data. The line that envelops the scatter plot is the convex hull of the set of cutoff-dose values
or the set C over which we compute ATEs.
(b) Three dimensional scatter plot of the implicit weighting scheme of the normalization procedure plotted
over set C. The Z-axis is the relative density of the forcing variable fX,P (cp′,j′ , p

′)/
∑
p,j fX,P (cp,j , p) for

every (p′, j′) in the set C.

In table 2, we compare the estimate obtained by the normalization procedure to estimates

of ALTE using two different weighting schemes (i) and (ii). Weighing scheme (i) is the relative

density of the forcing variable at the existing cutoffs which is the implicit weighting scheme

of the normalization procedure. This justifies the similar results of lines 1 and 2 of table

2. The average return of having access to a better high school for those students near the

cutoffs is about 0.04 of a point in the baccalaureate exam grade (grades vary between 0 and

10). None of the estimates throughout this section are bias corrected because the bias terms

are negligible. Weighing density (ii) is based on a policy question described below.

Suppose that Romania wants to invest in elite high schools as part of a national science

and innovation program. The new policy marginally increases the number of vacancies of

high schools that currently admit the top 25% students, that is, those students with transition

scores greater than 8.69. The goal is to grant high ability students access to better schools by

marginally decreasing the admission cutoffs of elite high schools. Opponents to the schools’
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expansion argue that top quartile students who would be allowed into the most elite schools

would not benefit sufficiently to justify the costs of modifying school buildings, transferring

teachers, and the like. We are interested in the average effect among those students that are

granted access to better high schools because of this policy. The ALTE of interest weights

those individuals that are local to the existing cutoffs of the selected high schools, and its

estimate is shown in table 2, third line. The impact of this policy is statistically equal

to zero which strongly suggests that local treatment effects are heterogeneous, high ability

students won’t benefit from having access to better schools, and conclusions based on the

normalization procedure are misleading to answer this policy question. The difference in

µALTE due to different weighting scheme is statistically different than zero (table 2, 4th

line).

Table 2: Heterogeneity Case I - Different Weighing Schemes

Method Parameter Estimate S.E.

Normalization µ
(i)
ALTE 0.0381 0.0082***

µ
(i)
ALTE 0.0417 0.0113***

Two-step µ
(ii)
ALTE -0.0243 0.0282

µ
(i)
ALTE − µ

(ii)
ALTE 0.0659 0.0276**

Notes: ‘Normalization’ pools data from all town-years where each individual is matched to his nearest
admission cutoff and the cutoff value is subtracted from the individual transition scores Xi, so to have one
cutoff at zero for everybody. Each individual observation is used only once in the estimation (no overlapping
estimation windows). Normalization estimates are obtained by Local Linear Regression (LLR) with optimal
IK bandwidth (Imbens and Kalyanaraman (2012)) and Edge kernel. Estimates for lines 2,3 and 4 are
obtained according to the 2-step estimation procedure described in section 2. The first step uses LLR with IK
bandwidth for almost all cutoffs, and the Nadaraya-Watson (i.e. ρ = 0) for those few cutoffs that did not have

enough observations to run a LLR. The weighting scheme (i) is ωp′,j′ = f̂X,P (cp′,j′ , p
′)/
∑
p,j f̂X,P (cp,j , p) for

every p′, j′, where fX,P (cp′,j′ , p
′) is estimated using an uniform kernel with the Silverman’s bandwidth. The

weighting scheme (ii) is ωp′,j′ = f̂X,P (cp′,j′ , p
′)/
∑
p,j : cp,j≥8.96 f̂X,P (cp,j , p) for p′, j′ such that cp′,j′ ≥ 8.96

and ωp′,j′ = 0 otherwise.

The inference method developed under heterogeneity case II allows for estimation of

ATEs over continuous counterfactual distributions of the forcing variable and dose-changes.

This permits inference over a much more general set of counterfactuals and not only those
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policies that target the individuals near the existing cutoffs. Suppose we are interested in

using the Romanian data to predict how students would benefit from a new charter school

that admits students from disadvantaged backgrounds. More specifically, suppose the charter

school admits students by lottery drawing from the national distribution of students with

transition score below 8 and that are currently attending a high school of average peer-

performance less or equal than 8. Assume that, because the new charter school has more

autonomy and better management than traditional public schools, it will be equivalent to a

high school of average peer performance equal to 8 (even though its average student scores

less than 8). Given these parameters, we compute the distribution of transition scores X,

and dose changes U = 8−D of those individuals admitted into this charter school. Figure 4

illustrates the weighting density ω(x, u) implied by this policy counterfactual. Note that the

support of ω(x, u) involves not only individuals with transition scores equal to the observed

cutoff dose-change values but also away from them (compare figures 3(a) and 4(a)).

Figure 4: Weighing Density of Charter School Example

(a)
(b)

Notes: (a) The contour line indicates the boundary of the set C. The shaded region inside set C is made of
the scatter plot of the transition scores and dose-change values of those individuals admitted into the charter
school. The shaded area illustrates that the support of the weighting density ω(x, u) is more general than
simply the cutoff dose-change values observed in the data (figure 3(a)).
(b) The weighting density ω(x, u) implied by the charter school example.

We compute the estimate for µATE using the distribution ω(x, u) of students admitted
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into the charter school (table 3). The estimate µ̂ATE is equal to 0.0547 of a point in the bac-

calaureate exam grade, and it is statistically different than zero. Estimation of µATE requires

corrected weights as discussed in section 3. A natural question that arises is how well the

parameter µALTE, defined using the relative density weights from the charter school density

ω(x, u), approximates the parameter µATE. The estimate µ̂ALTE computed in this manner is

approximately half of µ̂ATE and statistically insignificant. Also, under finite K asymptotics,

the null hypothesis of equality between µ
(ii)
ALTE defined using relative density weights and

µ
(i)
ALTE defined using corrected relative density weights is rejected at 5% significance (third

line of table 3). The charter school policy question demands an ATE computed over the

entire distribution of students admitted. Using the distribution of student near the existing

cutoffs in the Romanian data leads to misleading conclusions. The difference between µATE

and µALTE arises from non-linearities in the treatment effect function β(x, u) that are not

captured in µALTE because it averages over only those individuals that are local to existing

cutoff values.

Table 3: Heterogeneity Case II - Charter School Example

Parameter Estimate S.E.

µATE 0.0547 0.0187***

µ
(ii)
ALTE 0.0283 0.0176

µ
(i)
ALTE − µ

(ii)
ALTE 0.0264 0.0135**

Notes: The first step estimation of both µALTE and µATE uses LLR with IK bandwidth for almost all
cutoffs, and the Nadaraya-Watson (ρ = 0) for those few cutoffs that did not have enough observations to

run a LLR. The second step estimation of µALTE averages first step estimates B̂p,j using the weighting
scheme ωp′,j′ = ω(cp′,j′ , p

′)/
∑
p,j ω(cp,j , p), where ω(x, u) refers to the charter school density. The second

step estimation of µATE uses a bivariate local cubic regression (ρI = 3) to compute the corrected weights
∆p,j . Corrected weights depend on a choice of second step bandwidth hI , and hI was chosen to minimize

the MSE of µ̂ATE . Using the charter school density ω(x, u), we define µ
(i)
ALTE with corrected relative density

weights, and µ
(ii)
ALTE with relative density weights.

We illustrate our estimation procedure for heterogeneity case III by specifying the fol-
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lowing parametric functional form for the treatment effect function.

β(x, u) = θ1u+ θ2xu+ θ3x
2u

This functional form is chosen to be linear in u in order to be consistent with the restriction

that β(x, d, d′) = β(x, d′ − d) = β(x, u) that was imposed in the beginning of this section.

The quadratic term in the transition score x allows for varying marginal effects of ability on

the returns to school quality. In table 4, we report the estimates for the θs and µATE for the

charter school weighting density. We compare estimates for two choices of weighting matrix

Ω: (i) cutoffs are equally weighted; (ii) cutoffs are weighted by the inverse of their first step

variance Vp,j (optimal weighting that minimizes variance). The precision of the parameter

estimates is greatly improved when the optimal weighting is used, and all parameter esti-

mates become statistically significant. Thetas that are different zero suggest heterogeneity

of treatment effects across cutoffs. According to this parametric functional form, the ATE

for the charter school example is positive, significant and higher than before.

Table 4: Heterogeneity Case III - Sharp Case

Equal Weighting Optimal Weighting
Parameter Estimate S.E. Estimate S.E.

θ1 0.4802 1.2856 2.2085 0.5158***
θ2 -0.1243 0.3509 -0.5171 0.1465***
θ3 0.0100 0.0238 0.0317 0.0103***

µATE (charter school) 0.0790 0.0133*** 0.1147 0.0084***

Notes: the first step estimates of Bp,j were obtained by LLR with IK bandwidth for almost all cutoffs, and
the Nadaraya-Watson (ρ = 0) for those few cutoffs that did not have enough observations to run a LLR.
Second step parametric estimates were obtained according to the procedure described in section 4.1 for two
choices of weighting matrix Ω: (i) equal weighting, Ω = IK×K (identity matrix); (ii) optimal weighting,
Ω = diag{V̂p,j}p,j . The average µATE is the integral of the estimated parametric β(x, u) weighted by the
charter school weighting density ω(x, u).

Returns to better schooling are increasing in the change in school quality u, and the

slope is larger for students with lower transition score. Figure 5(a) plots the treatment effect
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function β(x, u) against u for the 25th, 50th, and 75th quantiles of the transition scores in set

C. Figure 5(b) repeats the plot of β(x, u) for the median value of x and adds 95% pointwise

confidence intervals.

Figure 5: Returns to Better Peers and Change in Treatment Dose
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Notes: (a) estimated parametric treatment effect function β(x, u) plotted against changes in average peer
performance u within set C. Transition score x is fixed at three choices corresponding to the 25th, 50th and
75th percentiles of the distribution of cutoff values.
(b) For x fixed at the median cutoff value, β(x, u) is plotted against u along with 95% confidence bands.

Returns to better schooling generally decrease as the transition score x increases, as

shown in figure 6. Panel (a) plots the treatment effect function β(x, u) against x for three

fixed values of dose changes that are equal to the 25th, 50th and 75th quantiles of the dose-

changes in the set C. Panel (b) plots 95% confidence bands around the β(x, u) for the median

value of u.

53



Figure 6: Returns to Better Peers and Transition Score
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Notes: (a) estimated parametric treatment effect function β(x, u) plotted against transition score x within
set C. The change in average peer performance u is fixed at three choices corresponding to the 25th, 50th
and 75th percentiles of the distribution of changes in average peer performance.
(b) For the median value of u, β(x, u) is plotted against x along with 95% confidence bands.

Thus far the analysis has been restricted to ITT effects; that is, the average effect on

the baccalaureate exam grade when students have access a high school with better peers.

Using the parametric functional form specification from above, we turn to the fuzzy case

where inference is conditioned on the subgroup of ‘compliers’. We compare estimates for

two choices of weighting matrix Ω: (i) cutoffs are equally weighted; (ii) cutoffs are optimally

weighted to minimize variance. Similar to the sharp case, the optimal choice of Ω reduces

the standard-errors and changes the conclusion of the individual significance tests on the

thetas (Table 5). The marginal effects of x and u on treatment effects have a similar shape

to the ones in the sharp case (figures 5 and 6), so we don’t plot them again. The ATE over

students admitted to the charter school is much higher than the ITT ATE. Attending the

better charter school has an impact on the baccalaureate grade of 0.07 point higher than the

impact from only having access to the better charter school.
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Table 5: Heterogeneity Case III - Fuzzy Case

Equal Weighting Optimal Weighting
Parameter Estimate S.E. Estimate S.E.

θc1 -0.2458 1.6576 7.3906 0.7253***
θc2 0.1202 0.4362 -1.7812 0.1953***
θc3 -0.0093 0.0285 0.1080 0.0130***

µcATE (charter school) 0.1034 0.0176*** 0.1868 0.0106***

Notes: the first step estimates of Bp,j were obtained by LLR with IK bandwidth for almost all cutoffs, and
the Nadaraya-Watson (ρ = 0) for those few cutoffs that did not have enough observations to run a LLR.
Second step parametric estimates were obtained according to the procedure described in section 4.2 for two
choices of weighting matrix Ω: (i) equal weighting, Ω = IK×K (identity matrix); (ii) optimal weighting,
Ω = diag{V̂p,j}p,j . The average µcATE is the integral of the estimated parametric βc(x, u) weighted by the
charter school weighting density ω(x, u).
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6 Conclusion

Regression discontinuity designs (RDD) have been used in a wide range of applications

in Economics since the late 1990s. Identification and estimation results are well developed

for the one cutoff case. More recently we see an increasing number of applications with

one forcing variable and multiple cutoffs assigning individuals to heterogeneous treatments.

There is a lack of theoretical studies investigating the conditions under which researchers

can combine multiple local treatment effects to estimate an average treatment effect (ATE).

A common practice is to normalize all cutoffs to zero and use the one cutoff estimator

to obtain a summary effect. The average effect of the normalization strategy can lead

to misleading conclusions if interest lies on average effects with different distributions of

individuals including individuals away from existing cutoffs.

This paper proposes inference procedures for average effects in RDD with multiple thresh-

olds. Our estimator is consistent and asymptotically normal for an average treatment effect

over the entire support in which we observe variation in cutoffs and treatment doses. If

treatment effects follow a non-parametric model, asymptotic results require both the num-

ber of observations and cutoffs to grow large. The rate of growth of the number of cutoffs

relative to the number of observations determines the feasible set of bandwidth choices. The

number of cutoffs cannot grow too fast to allow consistent estimation of local treatment

effects uniformly across cutoffs. The number of cutoffs cannot grow too slowly to control

the bias in the integral approximation of the ATE. The maximum rate of convergence of

the estimator is root-n within the feasible set of bandwidth choices. If treatment effects

follow a parametric model, then observations can be optimally combined for efficiency, and

a parametric function form obtains identification in the fuzzy case.

We apply our methods to the data of PEU on high school assignment in Romania based

on transition scores of students. We examine estimates for two types of average effects: (i)

average of local treatment effects (ALTE); and (ii) average treatment effect (ATE). For the

(ALTE), we compare the weighting scheme implicit to the normalization strategy (relative
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density of individuals at the cutoff values) to a weighting scheme over the top 25% of individ-

uals in the distribution of transition scores. Statistically different average effects illustrate

the heterogeneity of local treatment effects and the inability of the normalization strategy

to answer policy questions that lead to different weighting schemes. We estimate the ATE

over a distribution of individuals admitted into a fictitious charter school. Results indicate

the inability that an (ALTE) has to predict the effect of such policy.

We also illustrate estimates of a simple parametric specification that allows returns to

better schooling to vary with the transition score and school quality. We find that the op-

timal weighting scheme that minimizes variance changes inference conclusions on individual

parameters. Returns to better schooling are increasing in school quality but at a decreasing

rate in transition score. The high school assignment in Romania translates into a fuzzy

RDD, so we use the parametric specification to infer the effects on compliers. We find that

the average return of going to the charter school for compliers is almost twice as big as the

average return of having access to the charter school.
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