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1 Introduction

The financial industry has been heavily criticized in recent years. One criticism often made
is that it has simply become too large. Tobin (1984) worried that “we are throwing more
and more of our resources, including the cream of our youth, into financial activities remote
from the production of goods and services, into activities that generate high private rewards
disproportionate to their social productivity”. In the decades since Tobin’s remark, the
financial industry has become much larger. Philippon and Reshef (2012) and Philippon
(2014) document that the share of value added of financial services in GDP has risen from
about 5% in 1980 to about 8% in recent years. While 8% of GDP is certainly a large number,
it doesn’t necessarily follow that it’s excessive. In order to reach this conclusion one needs
to have a framework for assessing how the size of the financial industry compares with the
social optimum.

In this paper I propose and implement a method to measure a variable I label r. r is the
ratio of the marginal social value to the marginal private value of dedicating resources to one
activity within finance: acquiring expertise to evaluate assets. If r > 1, then the marginal
social value exceeds the marginal private value. Under the assumption that marginal private
value equals marginal cost, this implies that marginal social value exceeds marginal cost and
a social planner would want more resources allocated to this activity. Conversely, if r < 1,
a planner would want fewer resources dedicated to it.

The measurement is based on a particular model of financial expertise. I assume that
financial firms earn income because they have expertise to trade in markets with asymmetric
information: banks assess the creditworthiness of borrowers, venture capitalists decide which
startups are worth investing in, insurance companies evaluate risks, etc. Acquiring this
expertise requires using productive resources that might be employed elsewhere: talented
workers develop valuation models, IT equipment processes financial data, etc.

I formalize this in a model with the following elements. There is a group of households
who own heterogeneous assets, either good or bad. Each household can keep its asset or
sell it to a bank. Due to differential productivity or discount factors, selling assets creates
gains from trade, which differ by household. Each household is privately informed about the
quality of its own asset, while banks only observe imperfect signals about them. Each bank
may, at a cost, acquire expertise. Having more expertise means receiving more accurate
signals about the quality of the assets on sale.

I model trading using the competitive equilibrium concept proposed by Kurlat (2016).
In equilibrium, all assets trade at the same price; owners of good assets can sell as many
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units as they choose at that price but owners of bad assets face rationing. Only banks that
are sufficiently expert choose to trade, while the rest stay out of the market. The price
reflects the pool of assets acceptable to the marginal bank. Because this pool includes bad
assets, households that sell good assets do so at a discount. Therefore, as in Akerlof (1970),
households who have insufficiently large gains from trade choose not to sell, leading to a loss
of surplus.

In this model, expertise is privately valuable to the individual bank because it enables it
to better select which assets to acquire, improving returns. It is also socially valuable because
it reduces overall information asymmetry, changing equilibrium prices and allocations and
creating gains from trade. However, there is no reason for private and social values to
be equal, i.e. no reason to believe r = 1. The private value depends on how expertise
improves an individual trader’s portfolio. The social value depends on how it draws marginal
households into the market by shifting the entire equilibrium, which the marginal bank
ignores.

It is possible to derive an analytical expression for r but it turns out to be quite compli-
cated because it depends on various possible feedback effects. The main result I show is that
it is possible to decompose the formula for r into sufficient statistics: measurable quantities
that, combined, capture all the effects that are relevant for r without the need to separately
measure all the parameters of the model. In particular, I show that

r = η

(
1− 1− f

α

)
(1)

where η is the elasticity of the volume of good assets that are traded with respect to capital
inflows, f is the proportion of bad assets among the assets that are traded and α is the
average NPV per dollar invested earned by banks. α and f enter formula (1) because they
measure the value of marginal trades: if banks make high profits despite acquiring a high
fraction of bad assets, the adverse selection discount suffered by the marginal seller must be
high, indicating large gains from trade at the margin. η enters formula (1) because an inflow
of funds and an increase in the expertise of an individual bank affect the equilibrium through
the same channel: by increasing the demand for good assets. Therefore η is informative about
how many additional trades would take place if a bank increased its expertise at the margin.

Formula (1) applies under the polar assumptions that the value of bad assets is zero and
that households know perfectly which assets are bad. Before turning to empirical applications
I first show how to extend the formula when these assumptions are relaxed. If the value of bad
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assets is positive, one just needs to measure it and incorporate it into a generalized version
of formula (1). Accounting for the possibility that households are not perfectly informed
is harder because it requires measuring what households know, which has no immediate
empirical counterpart. However, it is possible to sign the direction of the bias and establish
whether the measured r is an upper or a lower bound.

I implement formula (1) empirically for two applications: junk bond underwriting and
venture capital. For for junk bonds I rely on a combination of existing studies on underwriting
fees (Datta et al. 1997, Jewell and Livingston 1998, Gande et al. 1999) and new estimates
based on the universe of junk bonds issued around 1990, exploiting the variation around the
collapse of the investment bank Drexel Burnham Lambert. I find r = 0.18. For venture
capital, I rely on existing studies (Gompers and Lerner 2000, Hall and Woodward 2007) that
break down the returns to venture investment by investor and over time, and find r = 0.73.
These figures imply that of the last dollar earned by junk bond underwriters and venture
capitalists by investing in expertise, 18 and 73 cents respectively is value added and the
rest is captured rents. By these measures, both industries overinvest in expertise. There
is considerable uncertainty around these numbers. The conclusion that r < 1 seems fairly
robust for junk bond underwriters but less so for venture capital.

As discussed by Cochrane (2013) and Greenwood and Scharfstein (2013), underlying
some of the concern about the size of the financial industry is a view that finance is a largely
rent-seeking, socially wasteful, industry. Bolton et al. (2011), Philippon (2010), Glode et al.
(2012), Shakhnov (2014) and Fishman and Parker (2015) describe theoretical environments
where over-investment in financial expertise emerges as an equilibrium outcome. In the
model I study, banks are engaging in activities that look a lot like rent-seeking, since they
dedicate resources to try to find profitable trades. However, this has the socially valuable
side effect of correcting the mispricing that arises due to adverse selection, which induces
gains from trade. The relative magnitude of rents and social gains could in principle go in
either direction (pure rent-seeking is a special case), and can be assessed empirically.

There is a separate empirical literature on the value of finance based on aggregate cross-
country data. Murphy et al. (1991) find that the proportions of university graduates in law
(negatively) and engineering (positively) are correlated with economic growth, and argue
that this roughly corresponds to the distinction between financial and productive activities.
Levine (1997, 2005) surveys cross country evidence that finds a positive correlation between
economic growth and the size of the financial sector. Relative to this literature, I take a
micro rather than aggregate perspective. Instead of studying the value of finance as a whole,
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I focus on the marginal value of specific activities within the financial industry.
On the theoretical side, the model and the equilibrium concept are extensions of Kurlat

(2016), which in turn builds on earlier ideas by Gale (1996) and Guerrieri et al. (2010).
Kurlat (2016) focuses on a case where each seller either has no gains from trading or does
not value the asset at all. A relatively minor innovation in the present study is to extend the
analysis to the case where the gains from trade can take intermediate values. This matters
because inefficient retention only happens among sellers with these intermediate potential
gains from trade. The more substantial new result is the derivation of the sufficient statistic
formula (1).

The paper is organized as follows. Section 2 presents the model, defines and characterizes
the equilibrium and defines r. Section 3 has the derivation of the sufficient statistics needed
to measure r. Section 4 presents the measurements of r for junk bonds and venture capital.
Section 5 discusses the implications of the findings and some of their limitations.

2 The Model

2.1 Agents, Preferences and Technology

The economy is populated by households and banks, all of whom are risk neutral.
Banks are indexed by j ∈ [0, 1]. Bank j has an endowment w (j) of goods that it may

use to buy assets from households. It is best to think of this endowment as including both
the bank’s equity and its maximum debt capacity, i.e. the maximum amount of funds it can
invest.

Households are indexed by s ∈ [0, 1]. Each household is endowed with a single divisible
asset i ∈ [0, 1], which it may keep or sell to a bank. The household’s type s and the index of
its asset i are independent. If sold to a bank, asset i will produce a dividend of

q (i) = I (i ≥ λ)V (2)

This means a fraction λ of assets are bad and yield 0 and a fraction 1−λ are good and yield
V . If instead household s keeps asset i, it will produce a dividend of β (s) q (i). Therefore
(1− β (s))V are the gains produced if a household of type s sells a good asset to a bank.
Assume w.l.o.g. that β (·) is weakly increasing, so higher types get more dividends out of
good assets. There is no need to assume that β (s) < 1 for all s, the model can allow for
households for whom there are no gains from trade.
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Several applications fit this general framework. In an application to household borrowing,
q (i) represents future income and β (s) is the household’s discount factor. In an application
to venture capital, households represent startup companies, banks represent venture capital
funds and β (s) is the fraction of the startup’s potential value that can be realized without
obtaining venture financing. In an application to insurance, q (i) is the household’s expected
income net of any losses and β (s) q (i) is its certainty-equivalent.

2.2 Information and Expertise

The household knows the index i of its asset and therefore its quality q (i). Banks do not
observe i directly but instead observe signals that depend on their individual expertise. A
bank with expertise θ ∈ [0, 1] will observe a signal

x (i, θ) = I (i ≥ λθ)V (3)

whenever it analyzes asset i, as illustrated in Figure 1.1 Higher-θ banks are more expert
because they make fewer mistakes: they are more likely to observe signals whose value
coincides with the true quality of the asset.

q(i)x(i; 30)x(i; 3)
more expertise

0 63 630 6 1
0

V

Bad Assets Good Assets

Figure 1: Asset qualities and signals

The level of expertise θ is endogenously chosen by each bank. The cost for bank j of
acquiring expertise θ is given by cj (θ). The function cj (·) is allowed to be different for
different banks.

1The information structure implied by equation (3) is special in that banks only make mistakes in one
direction. Kurlat (2016) analyzes other possible cases.

6



2.3 Equilibrium

There are two stages. Banks acquire expertise in the first stage and trading takes place in
the second. For the trading stage, I adopt the notion of competitive equilibrium proposed by
Kurlat (2016). The complete definition of equilibrium and the proof that the characterization
below is indeed an equilibrium are stated in the Appendix.

Markets at every possible price are assumed to coexist, and any asset can in principle
be traded in any market. Households choose in what market (or markets, as there is no
exclusivity) to put their asset on sale and banks choose what markets to buy assets from.
Banks who want to buy may be selective, refusing to buy some of the assets that are on
sale, but how selective they can be depends on their expertise. They can only discriminate
between assets that their own information allows them to tell apart. This implies that a bank
with expertise θ will accept assets in the range i ∈ [λθ, 1]. This range includes i ∈ [λθ, λ)

(some of the bad assets) and i ∈ [λ, 1] (all the good assets). Banks receive a random sample
of the assets on sale that they are willing to accept.

Market clearing is not imposed as part of the equilibrium definition. Assets may be
offered on sale in a given market but not traded because there are not enough buyers who
are willing to accept them. As in Gale (1996) and Guerrieri et al. (2010), rationing may and
indeed does emerge as an equilibrium outcome.

An equilibrium in the trading stage will result in a function τ (θ) which says what is the
net payoff per unit of wealth of a bank with expertise θ. Given this, the first stage of the
bank’s problem is straightforward. Bank j chooses expertise θj by solving:2

max
θ
w (j) τ (θ)− cj (θ) (4)

Let W (θ) denote the total wealth of banks that choose expertise at most θ, i.e.

W (θ) ≡
ˆ
w (j) I (θj ≤ θ) dj (5)

and let w (θ) ≡ ∂W (θ)
∂θ

. Nothing depends on W (θ) being differentiable but it simplifies the
exposition.

Taking W (θ) as given, the equilibrium in the trading stage is summarized by three ob-
jects: a single equilibrium price p∗, a marginal household s∗ that is indifferent between hold-
ing or selling a good asset and a marginal expertise level θ∗ that leaves the bank indifferent

2For simplicity, the cost cj (θ) is expressed directly in utility terms.
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between buying and not buying assets.
If household s decides to retain a good asset, its payoff is β (s)V ; if instead it decides to

sell it, its payoff is p∗. Therefore, in equilibrium the marginal household satisfies:

p∗ = β (s∗)V (6)

The measure of households that sell good assets is s∗ and the total number of good assets
on sale is (1− λ) s∗.

A bank who buys at price p∗ will be buying from a pool that contains (1− λ) s∗ good
assets and λ bad assets, since all households that own bad assets will attempt to sell them.
If it has expertise θ it will reject all assets with i < λθ, so the effective pool it draws from will
have λ (1− θ) bad assets. As a result, the fraction of good assets it will buy is s∗(1−λ)

s∗(1−λ)+λ(1−θ) ,
which is increasing in θ because more expert banks are able to filter out more bad assets.
The net payoff per unit of wealth of a bank with expertise θ is:

τ (θ) =
1

p∗

[
s∗ (1− λ)

s∗ (1− λ) + λ (1− θ)
V − p∗

]
(7)

There is a cutoff value θ∗ such that τ (θ) is positive if and only if θ > θ∗. Rearranging leads
to:

p∗ =
s∗ (1− λ)

s∗ (1− λ) + λ (1− θ∗)
V (8)

Banks with expertise above θ∗ spend all their wealth buying assets while banks with expertise
below θ∗ choose not to buy at all.

A bank with expertise θ will buy 1
p∗

s∗(1−λ)
s∗(1−λ)+λ(1−θ) good assets per unit of wealth. This

means that in total, banks will buy

1ˆ

θ∗

1

p∗
s∗ (1− λ)

s∗ (1− λ) + λ (1− θ)
dW (θ)

good assets. Imposing that all the (1− λ) s∗ good assets placed on sale are indeed sold and
rearranging implies:

p∗ =

1ˆ

θ∗

1

s∗ (1− λ) + λ (1− θ)
dW (θ) (9)

Note that market clearing of good assets is a result, it’s not imposed as part of the definition
of equilibrium. In fact, since bad assets are rejected by at least some banks, not all the ones
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that are put on sale are sold in equilibrium.
An equilibrium is given by p∗, s∗ and θ∗ that satisfy (6), (8) and (9). Under regularity

conditions stated in the Appendix, the equilibrium is unique.

2.4 Welfare

I measure welfare as the total surplus that is generated by trading assets, ignoring the
distribution of gains. When a household of type s sells a good asset, this creates (1− β (s))V

social surplus. Integrating over all households that sell yields a total surplus of:

S = (1− λ)

s∗ˆ

0

(1− β (s))V ds (10)

Consider an individual bank j that in equilibrium chooses to acquire expertise θj. Holding
the expertise choices of all other banks constant, let Sj (θ) be the social surplus that would
result if instead bank j were to acquire expertise θ. Define

rj ≡
S ′j (θj)

w (j) τ ′ (θj)
(11)

Mg. Private Bene-t w(j)= 0(3)

Mg. Social Surplus S0
j(3)

Mg. Cost c0
j(3)

30 3j 3opt 1
 

 

Figure 2: Example of marginal social surplus, private benefit and cost of additional invest-
ments in expertise. Bank j will choose expertise θj, equating marginal private benefit and
marginal cost. The socially optimal level of expertise would be θopt.
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Why is rj an object of interest? The logic is illustrated in Figure 2. The first order
condition for problem (4) is:

w (j) τ ′ (θj) = c′j (θj)

and therefore

rj =
S ′j (θj)

c′j (θj)

Hence rj is a measure of the amount of social value created per unit of marginal resources
that bank j invests in acquiring expertise. In the example in Figure 2, at the equilibrium
level of expertise θj, we have S ′j (θj) > w (j) τ ′ (θj) so rj > 1, which means that at the margin
investing more in expertise increases the net social surplus.

2.5 Private and Social Incentives

When a bank acquires additional expertise, it reduces the range of bad assets that it finds ac-
ceptable, improving its selection. This is the source of private incentives to acquire expertise.
Using (7), the marginal private gain from for bank j is:

w (j) τ ′ (θj) =
w (j)

p∗
V

λ (1− λ) s∗

[(1− λ) s∗ + λ (1− θj)]2
(12)

Changes in expertise also change the equilibrium, which affects the utility of both house-
holds and other banks. A bank’s expertise affects the equilibrium through the market clearing
condition (9). More expertise means that, for any given level of wealth, a bank will buy fewer
bad assets and therefore more good assets. Therefore something must adjust for the market
to clear. In general, all three endogenous variables will adjust. The equilibrium price p∗ will
rise; this will lead the marginal bank to exit, raising θ∗, and persuade the marginal household
to sell assets, raising s∗.

From a social perspective, the change in price in itself is neutral: it benefits households
at the expense of banks but it’s just a transfer. The only thing that matters for the social
surplus is the increase in s∗. Using (10), the marginal social surplus from bank j’s expertise
is:

S ′j (θ) = (1− λ) (1− β (s∗))V
ds∗

dθj
(13)

In equation (13), (1− λ) (1− β (s∗))V are the gains from trade that are created if a marginal
household s∗ decides to sell its good asset, and ds∗

dθj
is the shift in s∗ when bank j increases
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its expertise.
The basic source of inefficiency in the economy is the standard force in Akerlof (1970):

households inefficiently retain good assets because by selling them into a common pool with
bad assets they are unable to capture their full value. Expertise is socially valuable to the
extent that it undoes this underlying inefficiency. More expert banks filter out bad assets
from the pool, bid up the price and persuade marginal households to sell good assets, creating
gains from trade. If expertise were free to acquire, in this economy it would always be socially
beneficial to do so.

The marginal gains from trade that are created depend, among other things, on the
density of households that are close to the indifference margin. Suppose for example that
β (s) was a step function of the form:

β (s) = I (s ≤ µ)

where µ ∈ (0, 1). It’s easy to see that in this case s∗ = µ for any distribution of expertise.
Households with s ≤ µ have no value for retaining the asset so they would always sell in
equilibrium while households with s > µ value it just as much as banks so they will never
sell. Since there are no households close to the indifference margin, in this case, ds∗

dθj
= 0

and expertise has no social value. It would still, however, have a private value because an
individual bank would still benefit from better selection, so bank profits would be purely
rent extraction. Conversely, if there were many households with β (s) close to p∗

V
, then a

small increase in the price would induce large additional gains from trade. Since banks are
small and take the equilibrium as given, the shape of β (s) is just not part of the private
cost-benefit calculation.

In a standard efficient competitive economy it’s also the case that agents ignore their
effect on the equilibrium, but this does not result in an inefficiency because, since all the
gains from trade are exhausted in equilibrium, marginal trades create no social value. What
is special about an economy with underlying information asymmetry is that the marginal
trade creates strictly positive social value.

It is useful in applications to have a broad interpretation of what “selling” and “retaining”
an asset means. Consider a potential entrepreneur who has a good business idea and is
deciding whether to pursue it. If he can get outside funding on good terms, he will do so,
effectively selling a part of his business idea to financial markets. Otherwise, he may not
start a business at all and just look for a job, effectively retaining his idea and getting less
out of it than the first-best use. Under this broad interpretation, the usefulness of more
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expert financial intermediaries is that they make it possible for good projects to be carried
out, improving ex-ante investment decisions.

It is worth noting that if it were possible to redistribute banks’ endowments, then in-
vesting in expertise would always be socially wasteful. Rather than having many banks
invest independently in acquiring the same expertise, the efficient thing to do would be to
have a single bank acquire expertise and manage everyone’s endowment. The maintained
assumption is that for unmodeled moral hazard or span-of-control reasons this is not possi-
ble. Studying rj answers the question of what is the marginal social value of investments in
expertise taking as given the duplicative nature of these investments.

3 Measuring r

3.1 Solving for rj

Replacing (13) and (12) in (11):

rj =
(1− λ) (1− β (s∗))V

w (j) V
p∗

λ(1−λ)s∗

[(1−λ)s∗+λ(1−θ)]2

ds∗

dθj
(14)

A key ingredient of equation (14) is ds∗

dθj
, how many additional households sell good assets

when the expertise of bank j changes. In order to compute this, rewrite equations (6)-(9)
compactly as:

K (p∗, θ∗, s∗) = 0 (15)

where

K (p∗, θ∗, s∗) =


p∗ − β (s∗)V

p∗ − (1−λ)s∗

(1−λ)s∗+λ(1−θ∗)
V

p∗ −
´ 1

θ∗
1

(1−λ)s∗+λ(1−θ)dW (θ)


Let Ki denote the ith dimension of the function K and D = ∇K denote the matrix of
derivatives of K.

Using the implicit function theorem, (15) implies:

ds∗

dθj
= −D−1

33

∂K3

∂θj
(16)
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where

D−1
33 = − 1

|D|
λ (1− λ) s∗

[(1− λ) s∗ + λ (1− θ∗)]2
V (17)

|D| = V

[(1− λ) s∗ + λ (1− θ∗)]2


− λ(1−λ)(1−θ∗)

(1−λ)s∗+λ(1−θ∗)
w (θ∗)

+ [λ (1− λ) s∗V + ((1− λ) s∗ + λ (1− θ∗))w (θ∗)] β′ (s∗)

+λ (1− λ) s∗
´ 1

θ∗
(1−λ)

[(1−λ)s∗+λ(1−θ)]2dW (θ)


(18)

∂K∗3
∂θ

= −wj
λ

[(1− λ) s∗ + λ (1− θ)]2
(19)

Equation (19) captures the direct effect of an increase in bank j’s expertise. More ex-
pertise implies rejecting more bad assets and therefore buying more good assets. This shifts
the market clearing condition. Other things being equal, prices would have to rise to restore
equation (9). But, of course, all the endogenous variables respond: higher prices attract
marginal sellers of good assets and repel marginal banks, so both s∗ and θ∗ respond as well.
The term D−1

33 measures how shifts in the market clearing condition translate, through all
the feedback channels in the model, into a change in the marginal seller. Equation (19)
implies this is always positive: more expert banks lead to a higher equilibrium price and this
induces marginal households to sell good assets.

Replacing equations (16)-(19) into equation (14) and simplifying:

rj =
1

|D|
λ (1− λ) (1− β (s∗)) p∗V

[(1− λ) s∗ + λ (1− θ∗)]2
(20)

Formula (20) immediately implies the following result.

Proposition 1. rj does not depend on θj or wj

One might have conjectured that the misalignment of social and private returns to ex-
pertise might be different for banks with different wealth or for banks that (for instance due
to different cost functions) choose different levels of θ. That turns out not to be the case.
This means that if the financial industry has incentives to either over- or under-invest in
expertise, this will be true across the board, and any corrective policies don’t need to be
applied selectively.
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3.2 Sufficient Statistics

The main difficulty with quantifying expression (20) is that the expression for the determi-
nant |D| is quite complicated. This is because |D| captures the magnitude of all the various
feedback effects in the model: how selection depends on prices, the extensive margin of bank
participation, etc. The key to the sufficient statistic approach is that it is not necessary to
measure all the elements of |D| separately. |D| measures the strength of feedback effects
with respect to any driving force; therefore it enters the formula for any elasticity that one
could measure.

Let α be the average present value per dollar invested that banks obtain.3 In the model:

α =
(1− λ) s∗V´ 1

θ∗
dW (θ)

(21)

The numerator represents the total dividends obtained from assets acquired by banks and
the denominator is the total funds they spend.

Let f be the fraction of assets traded that turn out to be bad. In consumer loans, this
would correspond to the default rate; in venture capital it would correspond to the fraction
of ventures that fail, etc. If N is the total number of assets that are traded and G is the
number of good assets that are traded, then:

f ≡ 1− G

N

In the model we have:

N =

´ 1

θ∗
dW (θ)

p∗
(22)

G = (1− λ) s∗ (23)

The numerator in (22) is the total funds spent by banks who choose to trade and the
denominator is the price they pay per asset. Therefore:

f = 1− (1− λ) s∗p∗´ 1

θ∗
dW (θ)

(24)

Notice that measuring f only requires tracking failures among assets that actually trade, not
3The model is static, so the relevant concept of profitability is the present value for a given initial

investment rather than a per-period return.
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among all projects, which would be harder to measure. It is not necessary, for instance, to
measure counterfactual default rates among applicants that are denied credit.

Using (24), (21) and (6) results in:

1− f
α

=
p∗

V
= β (s∗) (25)

Formula (25) implies that measuring α and f makes it possible to recover β (s∗), the value
of the asset to the marginal seller, and therefore the social gains from the marginal trade.
The formula has the following interpretation. If 1−f

α
is low, this means that banks obtain

high profits despite the fact that only a small fraction of the assets they buy are good. For
this to be true it must be that p∗

V
is low, i.e. they must be making very high profits on the

good assets that they do buy, which means that the marginal household s∗ is preventing
large gains from trade by not selling.

Suppose now that there is an exogenous capital inflow into banks that increases all banks’
endowments by ∆, from w (j) to (1 + ∆)w (j). For instance, this could be the result of a
relaxation in leverage limits that lets banks manage larger portfolios with the same net
worth. According to the model, the elasticity of G with respect to this increase is

η ≡ d log (G)

d∆

=
d log (s∗)

d∆

= −D−1
33

∂K3

∂∆

1

s∗

=
1

|D|
λ (1− λ)

[(1− λ) s∗ + λ (1− θ∗)]2
p∗V (26)

Replacing (21), (24) and (26) into (20) and rearranging results in equation (1):

r = η

(
1− 1− f

α

)
η enters the formula because it is a way to measure the strength of the extensive margin ds∗

dθ
.

An increase in the expertise of one bank affects the equilibrium through the same channel
than an inflow of funds for all banks: through the market clearing condition (9). An inflow
of funds means that the more expert banks can afford to buy more assets; prices must rise
to restore equilibrium and s∗ responds to this. An increase in expertise means that the same
bank will reject more bad assets and therefore buy more good ones. Again, prices must rise
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to restore equilibrium and s∗ responds. Both effects involve the same mechanism and the
same feedback channels.

The quantities α and f can be measured relatively straightforwardly because they are
simple averages. η is more challenging because it requires identifying a plausibly exogenous
capital inflow or outflow and measuring its consequences. If such identifying assumptions
are satisfied, there are a few different ways to measure η depending on what outcomes are
easier to measure. The first, if the number of good assets traded can be measured, is simply
to measure η = d log(G)

d∆
directly. The second is almost as simple: if one can measure total

number of assets traded and failure rates, then relying on (24) one gets:

η =
d log (1− f)

d∆
+
d logN

d∆
(27)

A third option, if one measures failure rates, prices and total funds invested, is to use (22)
to further decompose:

η =
d log (1− f)

d∆
+
d log

(´ 1

θ∗
dW (θ)

)
d∆

− d log (p∗)

d∆
(28)

In all cases, measuring elasticities with respect to ∆ requires measuring ∆ itself, i.e. how
much banks’ endowments change. In some cases it might be possible to do this directly, for
instance if there is an increase in leverage limits that expands maximum balance sheets by
a known factor. In other cases one might have to rely on measured changes in the the total
number of funds actually invested in buying assets, which is not exactly the same. One of
the things that can happen when ∆ increases is that, because prices rise, marginal banks
exit. Therefore the measured proportional change in total funds spent buying assets could
be an underestimate of ∆. Formally:

d log
(´ 1

θ∗
dW (θ)

)
d∆

= 1−
dθ∗

d∆
w (θ∗)´ 1

θ∗
dW (θ)

≤ 1

However, it is not unreasonable to assume that w (θ∗) = 0. Choosing θ = θ∗ means that a
bank would earn τ (θ∗) = 0 despite having invested a strictly positive amount of resources in
acquiring expertise. Assuming w (θ∗) = 0 means assuming that no banks choose to do this.
Under this assumption, measuring an elasticity with respect to measured capital flows and
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with respect to ∆ is equivalent, i.e.

d log
(´ 1

θ∗
dW (θ)

)
d∆

= 1 (29)

and therefore d∆ and be replaced with d log
(´ 1

θ∗
dW (θ)

)
in formulas (27) or (28).

3.3 Recovery Value

The baseline model makes the extreme assumption that the dividend from bad assets is
exactly zero. While useful for theoretical clarity, in applications in may be desirable to relax
this assumption. For instance, lenders typically recover a positive fraction of the value of
loans that default.

Suppose that instead of zero, the dividend from bad assets was φV , where φ ∈ (0, 1).
Under this assumption, there will be two markets (prices) with active trade in equilibrium.
One of them would be similar to what happens in the baseline model: both good and bad
assets will be on sale and only sufficiently expert banks will buy at this price. The other is
the p = φV market, where only bad assets are on sale. In this market, less-expert banks
are willing to buy any asset on sale and make zero profits. Equations (6) and (9) still apply,
while the marginal bank indifference condition (8) generalizes to:

p∗ =
s∗ (1− λ) + λ (1− θ∗)φ
s∗ (1− λ) + λ (1− θ∗)

V (30)

p∗ is increasing in φ because, other things being equal, banks are willing to pay more for an
asset that has a positive recovery value if it turns out to be bad.

Assume that β (s) ≤ 1 for all s, so that households always value assets less than banks.
The total social surplus is now:

S =

(1− λ)

s∗ˆ

0

(1− β (s)) ds+ λφ

1ˆ

0

(1− β (s)) ds

V (31)

The first term in (31) is the same as in the baseline case. The second term measures the
gains from trade from bad assets. This second term does not depend on any endogenous
variables. The reason is that all the bad assets that don’t trade at p∗ will end up trading
at p = φV instead. Changes in the equilibrium will affect at what price they trade but not
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whether they trade or not.4 Using (31), the expression for the marginal social surplus is
unchanged, still given by (13). The marginal private value of expertise is now:

w (j) τ ′ (θj) =
w (j)

p∗
V

λ (1− λ) s∗ (1− φ)

[(1− λ) s∗ + λ (1− θj)]2
(32)

Other things being equal, a higher recovery value lowers the marginal return to expertise,
because banks have less to lose from buying a bad asset. Following the same steps as in the
baseline model, equation (17) generalizes to:

D−1
33 = − 1

|D|
λ (1− λ) s∗ (1− φ)

[(1− λ) s∗ + λ (1− θ∗)]2
V (33)

Other things being equal, a higher recovery value means that s∗ responds less strongly to
changes in the market clearing condition, because the recovery value makes the price respond
less strongly. The terms 1− φ in equations (32) and (33) cancel out and expression (20) for
rj remains unchanged.

Despite the fact that the formula for r does not change, the recovery value does enter the
expressions for the sufficient statistics. Formulas (22)(24) for N and f do not change.5 The
formula for α takes into account the dividends banks obtain from bad assets and therefore
becomes:

α =
N [(1− f) + fφ]´ 1

θ∗
dW (θ)

(34)

Formula (25) generalizes to
1− f + fφ

α
= β (s∗) (35)

and formula (26) for η becomes:

η = − 1

|D|
λ (1− λ) (1− φ)

[(1− λ) s∗ + λ (1− θ∗)]2
V p∗ (36)

4If we had β (s) > 1 for some s this would no longer be true because a household with β (s) ∈
(
1, φVp∗

)
would put a bad asset on sale at p∗ (where it would create a social loss if it trades) but would not sell it at
p = φV .

5This assumes that the data from which N and f are computed is drawn from the p∗ market only and
not from the p = φV market.
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Replacing (22), (24), (34) and (36) into (20) results in:

r =
η

α

(
α− 1

(1− φ)
+ f

)
(37)

which reduces to equation (1) for the special case of φ = 0.
Therefore the general approach to measuring r remains possible. It just requires mea-

suring recovery values for bad assets. Higher measured recovery values will result in higher
measured r because higher recovery values lessen private incentives for acquiring expertise
without changing its social value.

3.4 Ex-Post Risk

Another stark assumption in the baseline model is that households know the dividend of
their project perfectly, so that whenever an asset fails the household knew ex-ante that this
was going to happen. Under this assumption, the recovery rate from assets that fail (which
is what one would measure) is also the value of bad assets relative to good ones (which is
what matters in the model). Similarly, the measured rate of failed assets corresponds exactly
to the fraction of traded assets that are bad.

Suppose instead that even good assets fail with probability π. Let φ̂ denote the measured
recovery rate from assets that fail. The expected value of a good asset is πφ̂V + (1− π)V ,
so the relative value of bad assets is

φ =
φ̂

πφ̂+ (1− π)
(38)

Let f̂ denoted the measured fraction of assets that fail. If f is the fraction of traded assets
that are bad, then:

f̂ = f + (1− f) π

or, rearranging:

f = 1− 1− f̂
1− π

(39)

Replacing (38) and (39) into (37) to express r in terms of measurable quantities yields:

r =
η

α

(α− 1)

1 +
φ̂

(1− π)
(

1− φ̂
)
+ 1− 1− f̂

1− π

 (40)
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which reduces to (37) for the special case of π = 0.
In general, given measures of α, η φ̂ and f̂ , r can be increasing or decreasing in π. A

positive value of π means that φ̂ is an underestimate of φ: the expected value of good and
bad assets is not as far apart as simply measuring recovery rates would suggest, since some
good assets also fail. Since r is increasing in φ, correcting this bias would result in a higher
measured r. On the other hand, a positive value of π means that f̂ is an overestimate of f :
measured failure rates include some good assets. Since r is increasing in f , correcting this
bias would result in a lower measured r.

Obtaining a direct empirical measurement of π is difficult because π measures the extent
to which households are better informed that banks (π = 0 is the polar case of pure informa-
tion asymmetry), which is hard for an econometrician to observe. However, it is possible to
assess which way the bias goes without assigning an precise value to π. Taking the derivative
of (40):

∂r

∂π
=

η

α (1− π)2

(
(α− 1)

φ̂

1− φ̂
−
(

1− f̂
))

This implies that if:

Υ ≡ (α− 1)
φ̂

1− φ̂
−
(

1− f̂
)
> 0 (41)

then the underestimate of φ is more severe than the overestimate of f and the value that
results from assuming π = 0 and applying (37) is a lower bound for r, and vice-versa.

4 Applications

4.1 Junk Bond Underwriting

I map the junk bond market to the model following the “certification” view of underwriting
proposed by Booth and Smith (1986). The companies issuing bonds correspond to the
households in the model, investment banks that underwrite bonds correspond to the banks
in the model and the assets are streams of cashflows.

I abstract from the institutional and contractual complexities of underwriting and assume
that it takes place as follows. Underwriters compete to buy bonds in a market that operates
as described in Section 2. After each underwriter has bought bonds, it can credibly disclose
its information about them and re-sell them to investors who make zero profits. Inframarginal
underwriters earn the profits indicated by equation (7) because they buy bonds at a fair price
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conditional on the marginal bank’s information but re-sell them at a fair price conditional
on their own information. I map these profits to the underwriting spread.

Gande et al. (1999) report underwriting spreads averaging 2.76% for bonds rated between
Caa and Ba3 between 1985 and 1996; Jewell and Livingston (1998) report similar figures.
Furthermore, Datta et al. (1997) report an average initial-day return of 1.86% for low-grade
bonds. Arguably, this is also part of the underwriter’s compensation since it allows the
underwriter to place the bonds with favored clients or bolster its reputation. Accordingly, I
add these two fees to make up a total underwriting spread of 4.62% and set α = 1.046.

In order to obtain measures of η and f , I focus on the period around 1990 in order to
exploit the bankruptcy of the investment bank Drexel Burnham Lambert as a source of
variation. I construct a sample that includes (subject to data availability) all the corporate
bonds denominated in US dollars, issued between 1987 and 1990 and rated below investment
grade by either S&P, Moody’s or Fitch, a total of 585 individual bonds. The source is the
Bloomberg database. For each bond I observe the total dollar amount issued, its coupon
rate, its maturity, the yield spread against treasuries of comparable maturity and a binary
indicator of whether it subsequently defaulted.6

For each bond j, I measure Vj by discounting its coupon and principal payments at the
treasury rate of the corresponding maturity at the time of issuance. I then construct a
measure of pj by discounting the same coupon and principal payments at the bond’s actual
yield-at-issuance constructed by adding the bond’s spread to the treasury rate. For each
period t of the sample, I compute pt as the dollar-weighted average of pj

Vj
, ft as the dollar-

weighted fraction of bonds issued in period t that subsequently default and
´ 1

θ∗
dWt (θ) by

adding the dollar amount of all the bonds issued.
I measure f simply as the dollar-weighted fraction of bonds that defaulted in the whole

sample, and obtain f = 0.09. This is somewhat lower than the numbers reported in previous
studies (Altman 1989, 1992, Asquith et al. 1989, McDonald and Van de Gucht 1999, Zhou
2001), possibly as a result of unreported events of default.

I follow an event-study type of approach to measure η. The investment bank Drexel
Burnham Lambert filed for bankruptcy in February 1990 following an SEC investigation for
various forms of wrongdoing. Drexel was a major participant in the junk bond market, with
a market share above 40%, and its demise had a major impact on the market (Brewer and
Jackson 2000). I exploit the variation in volumes of bonds issued, bond prices and default

6I don’t observe all of these measures for all the bonds. In particular, data on spreads is missing for many
of them, so I exclude them from measures of p, though not from measures of total volume.
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rates around 1990 in order to obtain a measure of η. To do this, I separately regress log (pt)

and log (1− ft) on log
(´ 1

θ∗
dWt (θ)

)
using yearly aggregates for 1987-1990. I find coefficients

of 0.004 and 0.14 respectively. Applying formula (28) and assuming w (θ∗) = 0 so that (29)
holds, this results in η = 1.13.

The identification assumption is that around the window of Drexel’s bankruptcy, the
bankruptcy itself was the main source of movement in the junk bond market. There are
good reasons to question this assumption. The economy was entering a recession at the
time, and junk bond defaults were rising. It is possible that changes in the creditworthiness
of issuers drove the variation in volume, prices and subsequent defaults. This would mean
that both the elasticity of 1− f and the elasticity of p to capital flows are overestimated, so
the net bias in the measurement of η (and therefore r) could go in either direction.

One alternative is to focus on a narrower window around Drexel’s bankruptcy filing,
where it is somewhat more likely that the bankruptcy itself is driving the variation. If
I restrict the exercise to just two time periods: November 1989-January 1990 and March
1990-May 1990, I obtain η = 1.28. However, given the time it takes to arrange a bond issue,
a too-narrow window is not ideal either.

The final parameter to measure is the recovery rate for bonds that default. Altman
(1992) reports a average 41% recovery rate for high yield bonds between 1985-1991; Altman
et al. (2005) report an average of 37.2% for all defaulted corporate bonds between 1982 and
2001; Reilly et al. (2009) report an average 42% for high yield bonds between 1987 and 2009.
Based on these studies, I set φ = 0.4.

Replacing the measured values of α = 1.046, η = 1.13, f = 0.09 and φ = 0.4 into
formulas (37) and (41) gives r = 0.18. This means that out of the last dollar that junk
bond underwriters earn by being good at certifying the quality of bond issuers, 18 cents
are value added and the remainder is captured rents. Furthermore, applying formula (41)
gives Υ = −0.88 and since this is below zero, this implies that r = 0.18 is an upper bound:
allowing for the possibility that some defaults arise from good assets being risky rather than
pure information asymmetry would only lower r. Compared to the social optimum, the junk
bond underwriting industry dedicates too many resources to the acquisition of expertise.

The main reason for the low value of r is that applying formula (35) gives β (s∗) = 0.90.
This is a result of the low measured values of α and f . The social gains from the marginal
trade are not very large, only 10% of the value of good assets. This could be because marginal
junk bond issuers have alternative sources of funding (for instance, bank loans) or because
they are close to indifferent between obtaining financing or not.
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The measured values of α, f , φ and especially η are at best point estimates, in some cases
derived from only a handful of observations, so the exact numbers should be treated with
caution. Figure (3) shows how r changes with each of these variables. The range of values is
not a confidence interval in a statistical sense, but is indicative of how sensitive the measured
value of r is to each of its components. r is especially sensitive to default rates, but even
using quite higher numbers for f leaves r comfortably below 1. Therefore the conclusion
that there is more expertise acquisition than in the social optimum is fairly robust.

,
1 1.05 1.1 1.15 1.2

r

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

f
0 0.1 0.2 0.3 0.4

r
0.1

0.2

0.3

0.4

0.5

0.6

Baseline

f from Mc Donald
et. al. (1999)

2
0.8 1 1.2 1.4 1.6

r

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Baseline

Narrow
Window

?
0.2 0.3 0.4 0.5 0.6

r

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Figure 3: Sensitivity of r to each variable.

4.2 Venture Capital

The second application is more speculative, since within the literature on venture capital,
there is some debate about whether asymmetric information is a major issue at all. Gompers
(1995), Amit et al. (1998) and Ueda (2004) find evidence consistent with informational
asymmetries, but the debate is not settled. I will assume that there is indeed asymmetric
information, but the measure of r is conditional on the validity of this assumption.

Hall and Woodward (2007) use a large database of venture investments to measure how
the value of venture-backed firms is, on average, split between the firm’s founders and the
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general and limited partners of venture funds. I map these participants to the model as
follows. The firm’s founders are like the households in the model. They own an asset (the
firm) and there are possible gains from trade in transferring part of the ownership of the
firm to the venture fund. The general partners of venture funds are like the banks in the
model. They have expertise in determining which firms are valuable. The limited partners
are absent from the model. Hall and Woodward find that limited partners, who provide
capital to venture funds but are not directly involved in decision-making, get almost no risk-
adjusted excess returns from venture investments. I assume that general partners commit
to deliver zero excess returns to limited partners and keep all excess returns for themselves
in the form of fees. If this is true, the incentives to acquire expertise are proportional to
the capital that the general partners administer. Hence w (j) in the model corresponds to
the total capital administered by a venture fund, including the capital supplied by limited
partners.

Hall and Woodward find the the average net present value of all fees earned by general
partners is 26% of the funds invested.7 This suggests a value of α = 1.26. This is probably
an upper bound on α (and therefore an upper bound on r) since the rewards to venture
capitalists compensate them for other services they provide firms besides screening them.

Gompers and Lerner (2000) use a different but overlapping database on venture invest-
ments to estimate the elasticity of valuations for venture-backed firms with respect to inflows
of capital into venture funds. To do this they regress valuations of venture-backed firms at
the time of a venture funding round, which I map to log pt, on the toal volume of funds
committed to venture funds in a given time period, which I map to log

(´ 1

θ∗
dWt (θ)

)
. They

estimate a coefficient between 0.12 and 0.22 depending on the specification used. They don’t
report regressions with log (1− ft) on the left hand side but it’s possible to reconstruct them
on the basis of the time series of ft that they do report. Based on this data, the regression
coefficient of log (1− ft) on log

(´ 1

θ∗
dWt (θ)

)
is between 0.11 and 0.21 depending on the

exact definition of a successful venture that is used. Using these values in formula (28) and
assuming w (θ∗) = 0 so that (29) holds gives a range of η ∈ [0.89, 1.14]. I’ll take the midpoint
of this range, η = 1.01, as the baseline figure.

Gompers and Lerner’s estimates are based on exploiting time-series variation in inflows
to venture funds. The identification assumption is that these inflows and outflows are ex-
ogenous, which is questionable. Possibly, funds flow into venture funds attracted by better

7These fees have two main components: a management fee that is usually a percentage of all funds
committed and a “carry”, set as a percentage of a fund’s profits. The 26% figure is the average present value
of the sum.
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prospects for firms, which leads to higher prices and lower failure rates. Gompers and Lerner
control for the most plausible channels of reverse-causality by including measures of stock
market valuation as controls and by using inflows into leveraged buyout funds as instruments.
Furthermore, they argue that regulatory changes like the clarification of the “prudent man”
rule that allowed pension funds to invest in venture capital and changes in the capital gains
tax rate account for much of the variation. Still, it’s possible that the measured elasticities
have omitted variable bias. This would bias both the elasticity of 1− f and the elasticity of
p upwards, with an uncertain net effect on η.

Both Hall and Woodward and Gompers and Lerner propose measures of f , the fraction
of failures among venture-backed firms.8 Gompers and Lerner propose using the failure to
either conduct an IPO or be acquired at twice the original valuation as a definition of failure
(that definition is implicitly used in the measured elasticity above). Under this definition, in
their data, f = 0.66. Hall and Woodward report similar figures. In their sample, the fraction
of venture-backed firms that have not been acquired nor undergone an IPO is f = 0.65. Since
these figures are based on observing truncated histories and some firms might conduct IPOs
or be acquired later, this should probably be regarded as an upper bound on f .

According to Hall and Woodward, it is rare for venture-backed firms that are not acquired
or undergo an IPO to return much value to investors. This would suggest that a recovery
value of φ = 0 might be a defensible assumption. However, some venture-backed firms
continue as privately held firms and produce positive (though rarely large) dividends. I take
φ = 0 as the baseline case and examine how the numbers change with higher recovery values.

Replacing α = 1.26, η = 1.01, φ = 0.65 and φ = 0 into formula (37) gives r = 0.73. This
means that for the last dollar that general partners of venture funds earn by being good at
selecting which firms to invest in, 73 cents are value added and the remainder is captured
rents. Applying formula (41) givesΥ = −0.35, so r is an upper bound relative to a model
where good assets can also fail, which is undoubtedly an important issue in this application.
If these figures are correct, the venture capital industry also dedicates too many resources
to the acquisition of expertise relative to the social optimum. However, the measured wedge
between social and private incentives is smaller than for junk bond underwriters.

The finding that r is below 1 is more fragile than for junk bonds. Figure (4) shows how
8Asset payoffs in the model are binary, either 0 or V . Payoffs from venture-backed firms are far from

binary. Many fail and pay close to zero while among the successful ones there is a long right tail of extremely
successful ones. This can be reconciled with the binary-payoff model by assuming that the value of successful
firms is a random variable Ṽ with expected value V . If we assume that entrepreneurs are not privately
informed about the realization of Ṽ , then the fact that it’s random makes no difference.
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sensitive the measured value of r is to each of these variables. For instance, the combination
of α = 1.3, η = 1.25, f = 0.7 and φ = 0.12, which is not far from the point estimates, leads
to r = 1. Given the uncertainty in the measurements, it is hard to say conclusively that the
industry overinvests in expertise.
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5 Discussion

The method I use to measure r has both advantages and limitations, some of which have to
do with the method itself and others with the particular applications.

One advantage is that it does not require estimating or making assumptions about the
nature of the cost function cj (θ) (“how many physicists with PhDs does it take to value a
mortgage-backed security?”). Simply assuming that θ is chosen optimally makes it possible to
sidestep this question. Another advantage, common to methods based on sufficient statistics,
is that the ingredients of r can be measured without measuring all the structural parameters
of the model. Chetty (2008) offers a discussion of this type of approach.

One disadvantage, also common to sufficient statistics methods, is that r is a purely local
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measure at the equilibrium. If some policy were to result in a different equilibrium, then
r at the new equilibrium might be different. If one wanted calculate the optimal rate of a
simple Pigouvian tax to align private and social incentives it would be necessary to know r

at the new equilibrium rather than at the original equilibrium.
Another limitation is that r measures the size of the wedge between S ′j (θj) and w (j) τ ′ (θj)

but not the distance between the equilibrium θj and the social optimum θopt in Figure 2.
In order to assess this, it would be necessary to know more about the cost function. For
instance, if the marginal cost of expertise increased very steeply, then even a large wedge
between r and 1 would imply a small difference between θj and θopt.

In interpreting the measured values of r, it’s important to bear in mind that evaluating
trades in environments with asymmetric information is just one of the many things that
financial firms do. Therefore the measured r is informative about the net social value of
dedicating resources to these types of activities within finance and not necessarily about the
industry as a whole. Indeed, the method for measuring r could be applied to businesses that
are not usually classified as finance but also involve expertise for trading under asymmetric
information, such as used car dealerships.

The typical venture transaction differs from the simple outright sales that take place in
the model: the venture capitalist’s funds are invested in the firm rather that paid in cash
to the founders. This is an important distinction but it need not change the basic force at
play: venture capitalists demand a higher stake in the companies they finance than they
otherwise would in order to compensate for investing in the firms that end up failing, and
this discourages marginal entrepreneurs.

A maintained assumption is that (1− β (s))V represents the social value of the gains
from trade. If the trade itself generates externalities then the social gains from trade should
be adjusted accordingly. A firm that expands thanks to venture capital financing could gener-
ate positive externalities through technological spillovers or negative ones through business-
stealing. A firm that finances a buyout by issuing junk bonds could bring about new manage-
ment techniques that other firms learn from or could be destroying value to take advantage
of tax benefits. Taking this into account could make the social value of financial expertise
higher or lower than measured.
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Appendix

Equilibrium Definition

Each possible price p ∈ [0, V ] defines a market and any asset can in principle be traded in
any market. Markets need not clear: assets that are offered for sale in market p may remain
totally or partially unsold.
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Households trade by choosing at what prices to put their asset on sale. Markets are non-
exclusive: households are allowed to offer their asset for sale at as many prices as they want.
This implies that a household of type s who owns asset i will simply choose a reservation
price pR (i, s) and put its asset on sale at every p ≥ pR (i, s) and not at any price below that.9

From the household’s point of view, the only thing that matters about the equilibrium is at
what price it’s possible to sell its asset i, i.e. the extent to which it will face rationing at
each price. Formally, this is captured by a “rationing function” µ : [0, V ]× [0, 1]→ R. µ (p, i)

is the number of assets that a household would end up selling if it offers one unit of asset
i on sale with the reservation price p (thereby offering it on sale at every price in [p, V ]).
Implicit in this formulation is the assumption that assets are perfectly divisible, so there is
exact pro-rata rationing rather than a probability of selling an indivisible unit.

A household of type s who owns asset i solves:

max
pR

ˆ V

pR
pdµ (p, i) +

[
1− µ

(
pR, i

)]
β (s) q (i) (42)

s.t. µ
(
pR, i

)
≤ 1 (43)

The first term in (42) represents the proceeds from selling the asset, possibly fractionally
and across many prices. The second term represents the dividends obtained from whatever
fraction of the asset the household retains. Constraint (43) limits the household to not sell
more than one unit in total.

This problem as a simple solution. Define

pL (i) ≡ max {inf {p : µ (p, i) < 1} , 0}

pL (i) is the highest reservation price that a household can set and still be sure to sell its entire
asset; if there is no positive price that guarantees selling the entire asset, then pL (i) = 0.
It’s immediate that the solution to program (42) is:

pR (i, s) = max
{
pL (i) , β (s)V

}
(44)

If it’s possible to sell the entire asset at a price above the household’s own valuation, then
the household sets the reservation price at the level that guarantees selling; otherwise the

9There is an extra assumption involved in this. There will be many prices at which it’s impossible to sell
assets so the household is indifferent between offering its asset on sale in them or not. A reservation price is
the only optimal strategy that is robust to a small chance of selling at every price.
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reservation price is the household’s own valuation.
Turn now to the bank’s problem. It has two stages: first the bank chooses a level of

expertise and then it trades assets. In the second stage, the bank trades by choosing a
quantity δ, a price p and an acceptance rule χ. An acceptance rule is a function χ : [0, 1]→
{0, 1} from the set of assets to {0, 1}, where χ (i) = 1 means that the bank is willing to
accept asset i and χ (i) = 0 means it is not. By trading in market p with acceptance rule χ,
the bank obtains χ-acceptable assets in proportion to the quantities that offered on sale at
price p. A bank may only impose acceptance rules that are informationally feasible given the
expertise it has acquired, so it cannot discriminate between assets that it cannot tell apart,
i.e. χ (i) = χ (i′) whenever x (i, θ) = x (i′, θ).

From the point of view of banks, the only thing that matters about the equilibrium is
what distribution of assets it will obtain for each possible combination of price and acceptance
rule it could choose. Formally, this is captured by a measure A (·;χ, p) on the set of assets
[0, 1] for each χ, p. For any subset I ⊆ [0, 1], A (I;χ, p) is the measure of assets i ∈ I that a
bank will end up with if it demands one unit at price p with acceptance rule χ.

Therefore in the trading stage, a bank with expertise θ and wealth w solves:

max
δ,p,χ

δ

ˆ
[0,1]

q (i) dA (i;χ, p)− pA ([0, 1] ;χ, p)

 (45)

s.t. δpA ([0, 1] ;χ, p) ≤ w (46)

χ (i) = χ (i′) whenever x (i, θ) = x (i′, θ) (47)

(45) adds all the dividends q (i) of the assets the bank buys, subtracts what it pays per unit
and multiplies by total demand δ; (46) is the budget constraint and (47) imposes that the
bank use an informationally feasible acceptance rule.

Notice that w enters the problem only in the budget constraint, which is linear. This
implies that δ will be linear in w and p and χ will not depend on w. Let δ (θ), p (θ) and
χ (θ) denote the solution to the bank’s problem for a bank with w = 1 and expertise θ, and
let τ (θ) be the maximized value of (45) for w = 1.

The two key equilibrium objects are the rationing function µ (p, i) and the allocation
measures A (·;χ, p). The allocation measures A (·;χ, p) formalize the notion that banks
obtain representative samples from the assets on sale that they find acceptable. The rationing
function µ formalizes the notion that whether assets that are put on sale are actually sold
depends on how many units are demanded by banks who find them acceptable. To compute
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A and µ, first define supply and demand.
The supply of asset i at price p is:

S (i; p) =

ˆ

s

I
(
pR (i, s) ≤ p

)
(48)

(48) is just aggregating all the supply from households whose reservation prices are below p.
Demand is defined as a measure. Suppose X is some set of possible acceptance rules.

Define
Θ (X, p) ≡ {θ : χ (θ) ∈ X, p (θ) ≥ p}

Θ (X, p) is the set of bank types who choose to buy at prices above p using acceptance rules
in the set X. Aggregating δ (θ) over this set gives demand:

D (X, p) =

ˆ

θ∈Θ(X,p)

δ (θ) dW (θ) (49)

One complication is that if different banks impose different acceptance rules in the same
market, the allocation will depend on the order in which they execute their trades because
each successive bank will alter the sample from which the following banks draw assets. Kurlat
(2016) shows that if one allows markets for each of the possible orderings and lets traders
self-select, then in equilibrium trades will take place in a market where the less restrictive
banks execute their trades first.10 Less-restrictive banks’ trades do not alter the relative
proportions of acceptable assets available for the more-restrictive banks who follow them so,
as long as acceptable assets don’t run out, all bankers obtain assets as though they were
drawing from the original sample. This means that (as long as acceptable assets don’t run
out before a bank with rule acceptance rule χ trades, which does not happen in equilibrium)
the density of measure A (·;χ, p) is:

a (i;χ, p) =

{
χ(i)S(i;p)´
χ(i)S(i;p)di

if
´
χ (i)S (i; p) di > 0

0 otherwise
(50)

Knowing A, the rationing faced by an asset i depends on the the ratio of the total demand
10An acceptance rule χ̃ is less restrictive than another rule χ if χ (i) = 1 implies χ̃ (i) = 1 but there exists

some i such that χ̃ (i) = 1 and χ (i) = 0. Under the information structure (3), all feasible acceptance rules
can be ranked by restrictiveness.
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that gets satisfied (added across all χ) to supply, so

µ (p, i) =

ˆ

p̃ ≥ p

all χ

a (i;χ, p̃)

S (i; p̃)
dD (χ, p̃) (51)

I define equilibrium in two steps. First I define a conditional equilibrium, i.e. an equilib-
rium given the first-stage choices by banks that result in W (θ).

Definition 1. TakingW (θ) as given, a conditional equilibrium is given by reservation prices
pR (i, s), buying plans {δ (θ) , p (θ) , χ (θ)}, rationing measures µ (·; i) and allocation measures
A (·;χ, p) such that: pR (i, s) solves the household’s problem for all i, s, taking µ (·, i) as given;
{δ (θ) , p (θ) , χ (θ)} solves the bank’s second stage problem for all θ, taking A (·;χ, p) as given
and µ (·; i) and A (·;χ, p) satisfy the consistency conditions (50) and (51).

Using this, I now define a full equilibrium. The usefulness of this two-step definition
is that it is possible to focus on characterizing the conditional equilibrium without fully
specifying the cost functions cj that govern the banks’ first-stage decisions.

Definition 2. An equilibrium is given by expertise choices θj, a wealth distribution W (θ)

and a conditional equilibrium
{
pR, δ, p, χ, µ,A

}
such that: θj solves the bank’s first stage

problem for all j, taking the conditional equilibrium as given; W (θ) is defined by (5) and{
pR, δ, p, χ, µ,A

}
is a conditional equilibrium given W (θ).

Equilibrium Characterization

Taking W (θ) as given, let p∗, θ∗ and s∗ be the highest-p∗ solution to the system of equations
(6),(8) and (9). Furthermore, assume the following:

Assumption 1. 1
p

β−1( pV )(1−λ)

β−1( pV )(1−λ)+λ(1−θ∗)
V < 1 for all p > p∗

Proposition 2. If Assumption 1 holds, there is a unique conditional equilibrium, where:

1. Reservation prices are:

pR (i, s) =

{
max {p∗, β (s)V } if i ≥ λ

0 if i < λ
(52)
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2. The solution to the banks’ problem is:

{δ (θ) , p (θ) , χ (θ)} =

{ {
1
p∗
, p∗, I (i ≥ λθ)

}
if θ ≥ θ∗

{0, 0, 0} if θ < θ∗
(53)

3. The allocation function is:

a (i;χ, p) =



β−1( pV )χ(i)´ λ
0 χ(i)di+

´ 1
λ χ(i)β−1( pV )di

if i ≥ λ and p ≥ p∗

χ(i)´ λ
0 χ(i)di+

´ 1
λ χ(i)β−1( pV )di

if i < λ and p ≥ p∗

0 if i ≥ λ and p < p∗

χ(i)´ λ
0 χ(i)di

if i < λ and p < p∗

(54)

4. The rationing function is:

µ (p, i) =


1 if i ≥ λ, p ≤ p∗´ i

λ

θ∗
1

λ(1−θ)+s∗(1−λ)
1
p∗
dW (θ) if i ∈ [λθ, λ), p ≤ p∗

0 if i < λθ, p ≤ p∗

0 if p > p∗

(55)

Proof.

(a) Equations (52)-(55) constitute an equilibrium.

i. Household optimization. (55) implies that:

pL (i) =

{
p∗ if i ≥ λ

0 if i < λ

This immediately implies that pR (i, s) from (52) solves the household’s prob-
lem.

ii. Bank optimization.

A. χ (θ) is the optimal acceptance rule because, given (54), any other rule
that satisfies (47) includes a higher proportion of bad assets.

B. At any p < p∗, there are no good assets on sale so it is not optimal for
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any bank to choose this. For any p > p∗:

1

p

β−1
(
p
V

)
β−1

(
p
V

)
(1− λ) + λ (1− θ∗)

<
1

p∗
s∗

s∗ (1− λ) + λ (1− θ∗)
p∗

p

β−1
(
p
V

)
s∗

<
β−1

(
p
V

)
(1− λ) + λ (1− θ∗)

s∗ (1− λ) + λ (1− θ∗)
p∗

p

β−1
(
p
V

)
s∗

<
β−1

(
p
V

)
(1− λ) + λ (1− θ)

s∗ (1− λ) + λ (1− θ)
for all θ ≥ θ∗

1

p

β−1
(
p
V

)
β−1

(
p
V

)
(1− λ) + λ (1− θ)

<
1

p∗
s∗

s∗ (1− λ) + λ (1− θ)
for all θ ≥ θ∗

(56)

The first step is Assumption (1); the second is just rearranging; the third
follows because the right hand side is increasing in θ and the last is just
rearranging. Inequality (56) implies that all banks with θ ≥ θ∗ prefer to
buy at price p∗ than at higher prices. Therefore if they buy at all they
buy at price p∗.

C. For θ > θ∗, τ (θ) > 0 so the budget constraint (46) binds; for θ < θ∗

there is no χ (θ) that satisfies (47) and leads to a positive value for the
objective (45). Therefore δ (θ) is optimal .

iii. Consistency of A and µ. Replacing reservation prices (52) into (48) and using
this to replace S (i; p) into (50) leads to (54). Adding up demand using(53)
and (49) and replacing in (51) implies (55).

(b) The equilibrium is unique

Note first that since no feasible acceptance rule has χ (i) 6= χ (i′) for i, i′ ≥ λ, this
implies that pL (i) = pL (λ) and S (i, p) = S (λ, p) for all i ≥ λ. Now proceed by
contradiction.

Suppose there is another equilibrium with pL (λ) < p∗. Households’ optimization
condition (44) and formula (48) for supply imply that for p ∈

[
pL (λ) , p∗

]
:

S (i, p) =

{
β−1

(
p
V

)
if i ≥ λ

1 if i < λ
(57)

(57) implies that all banks with θ > θ∗ can attain τ (θ) > 0 by choosing p∗. By
(56), they prefer p∗ to any p′ > p∗ and therefore in equilibrium they all chose
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some p (θ) ∈
[
pL (θ) , p∗

]
and δ (θ) = 1

p(θ)
. Using (50):

a (i, χ (θ) , p (θ)) =
β−1

(
p(θ)
V

)
β−1

(
p(θ)
V

)
+ λ (1− θ)

for all i ≥ λ

Using (51), this implies that

µ (p, λ) =

ˆ

{θ:p(θ)≥p}

1

β−1
(
p(θ)
V

)
+ λ (1− θ)

1

p (θ)
dW (θ)

and therefore

µ
(
pL (λ) , λ

)
≥

1ˆ

θ∗

1

β−1
(
p(θ)
V

)
+ λ (1− θ)

1

p (θ)
dW (θ)

≥
1ˆ

θ∗

1

s∗ + λ (1− θ)
1

p∗
dW (θ)

= 1 (58)

The first inequality follows because the set {θ : p (θ) ≥ p (λ)} includes [θ∗, 1]; the
second follows because β−1

(
p∗

V

)
= s∗, β−1 is increasing and p∗ ≥ p (θ); the last

equality is just the market clearing condition (9). Furthermore, if p (θ) < p∗ for
a positive measure of banks, then (58) is a strict inequality, which leads to a
contradiction. Instead, if p (θ) = p∗ for almost all banks, then pL (λ) = p∗, which
contradicts the premise.

Suppose instead that there is an equilibrium such that pL (λ) > p∗. This implies
that there is no supply of good assets at any price p < pL (λ) and therefore no
bank with θ < θ∗ chooses δ (θ) > 0 and banks θ ∈ [θ∗, 1] choose some price
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p (θ) ≥ pL (λ) and δ (θ) ≤ 1
p(θ)

. Therefore, using (50) and (51), we have

µ
(
pL (λ) , λ

)
≤

1ˆ

θ∗

1

β−1
(
p(θ)
V

)
+ λ (1− θ)

1

p (θ)
dW (θ)

<

1ˆ

θ∗

1

s∗ + λ (1− θ)
1

p∗
dW (θ)

= 1

The first inequality follows from δ (θ) ≤ 1
p(θ)

; the second follows because β−1
(
p∗

V

)
=

s∗, β−1 is increasing and p∗ < p (θ); the last equality is just the market clearing
condition (9). Again, this is a contradiction.

Therefore any equilibrium must have pL (λ) = p∗. The rest of the equilibrium
objects follow immediately.

The Role of Assumption 1

The equilibrium concept gives banks the option to buy assets at prices other than p∗. Buying
at lower prices is clearly worse than buying at p∗ because the reservation price for good assets
is at least p∗ so no good assets are on sale at lower prices. Assumption 1 ensures that buying
at higher price is not preferred either. Given the reservation prices (52), the surplus per unit
of wealth for bank θ∗ if it buys at price p > p∗ is:

1

p

[
β−1

(
p
V

)
(1− λ)V

β−1
(
p
V

)
(1− λ) + λ (1− θ∗)

− p

]

In principle, the bank faces a tradeoff: better selection (because β−1 is an increasing func-
tion) but a higher price. Assumption 1 ensures that the direct higher-price effect dominates
and a bank with expertise θ∗ has no incentive to pay higher prices to ensure better selection.
It is then possible to show that if this is true for the marginal bank θ∗, it is true for all
banks: higher-θ banks care even less about selection because they can filter assets them-
selves and lower-θ banks can never earn surplus in a market where θ∗ would not. One can
still solve for equilibria where Assumption 1 does not hold, but they are somewhat more
complicated. Wilson (1980), Stiglitz and Weiss (1981) and Arnold and Riley (2009) analyze
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the implications of models where an analogue of Assumption 1 doesn’t hold.
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